【題目】已知一個(gè)一次函數(shù)的圖象與一個(gè)反比例函數(shù)的圖象交于點(diǎn)

分別求出這兩個(gè)函數(shù)的表達(dá)式;

在同一個(gè)平面直角坐標(biāo)系中畫出這兩個(gè)函數(shù)的圖象,根據(jù)圖象回答:當(dāng)取何值時(shí),一次函數(shù)的值大于反比例函數(shù)的值?

求平面直角坐標(biāo)中原點(diǎn)點(diǎn)構(gòu)成的三角形的面積.

【答案】1,;(2)圖見詳解,;(3.

【解析】

1)設(shè)反比例的函數(shù)解析式為,一次函數(shù)的解析式為,將點(diǎn)P代入可得k值,將點(diǎn)Q代入可得m值,將點(diǎn)PQ代入求解即可;

2)描點(diǎn)、連線即可畫出函數(shù)的圖象,當(dāng)一次函數(shù)的圖象在反比例函數(shù)圖象的上方時(shí),一次函數(shù)的值大于反比例函數(shù)的值,由此可確定x的取值;

(3)連接PO,QO,設(shè)直線與y軸交于點(diǎn)M,由求解.

解:(1)設(shè)反比例的函數(shù)解析式為,一次函數(shù)的解析式為,

將點(diǎn)代入,解得,

將點(diǎn)代入,

將點(diǎn),代入

得:,

解得

所以一次函數(shù)的表達(dá)式為,反比例函數(shù)的表達(dá)式為;

2)函數(shù)的圖象如圖所示,

由圖象可得,當(dāng)時(shí),一次函數(shù)的值大于反比例函數(shù)的值;

(3)如圖,連接PO,QO,設(shè)直線與y軸交于點(diǎn)M,

直線y軸的交點(diǎn)坐標(biāo)M0-1),即,點(diǎn)Py軸的距離為2,點(diǎn)Qy軸的距離為1,

,

所以平面直角坐標(biāo)中原點(diǎn)點(diǎn)構(gòu)成的三角形的面積為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線 yx2 bxc經(jīng)過(guò)ABC 的三個(gè)頂點(diǎn),其中點(diǎn) A(0,1),點(diǎn) B(9,10)ACx 軸,點(diǎn) P 是直線 AC 下方拋物線上的動(dòng)點(diǎn),過(guò)點(diǎn) P 且與 y 軸平行的直線 l 與直線 AB、AC 分別交于點(diǎn) E、F.

(1)求拋物線的函數(shù)表達(dá)式;

(2)如圖 1,當(dāng)四邊形 AECP 的面積最大時(shí),求點(diǎn) P 的坐標(biāo)和四邊形 AECP 的最大面積;

(3)如圖 2,當(dāng)點(diǎn) P 為拋物線的頂點(diǎn)時(shí),在直線 AC 上是否存在點(diǎn) Q,使得以 C,P,Q 為頂點(diǎn)的三角形與ABC 相似?若存在,請(qǐng)直接寫出點(diǎn) Q 的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小剛在實(shí)踐課上要做一個(gè)如圖1所示的折扇,折扇扇面的寬度AB是骨柄長(zhǎng)OA的折扇張開的角度為120°小剛現(xiàn)要在如圖2所示的矩形布料上剪下扇面,且扇面不能拼接已知矩形布料長(zhǎng)為24cm寬為21cm小剛經(jīng)過(guò)畫圖、計(jì)算,在矩形布料上裁剪下了最大的扇面,若不計(jì)裁剪和粘貼時(shí)的損耗,此時(shí)扇面的寬度AB為( )

A21cm B20 cm C19cm D18cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,每個(gè)小正方形的邊長(zhǎng)為1

1)直接寫出四邊形ABCD的面積和周長(zhǎng);

2)求證:∠BCD=90°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖的三張形狀相同、大小完全相同的方格紙,方格紙中每個(gè)小正方形的邊長(zhǎng)為1,請(qǐng)依次在3個(gè)圖中畫出滿足要求的三角形,要求所畫的三角形的各頂點(diǎn)必須與方格紙中小正方形的頂點(diǎn)重合.

1)畫一個(gè)底邊長(zhǎng)為4,面積為10的等腰三角形;

2)畫一個(gè)面積為10的等腰直角三角形;

3)畫一個(gè)一邊長(zhǎng)為2且面積為10的等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,BD平分∠ABC,BC的中垂線交BC于點(diǎn)E,交BD于點(diǎn)F,連接CF.若∠A60°,∠ACF42°,則∠ABC_____°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為加快“秀美荊河水系生態(tài)治理工程”進(jìn)度,污水處理廠決定購(gòu)買10臺(tái)污水處理設(shè)備.現(xiàn)有AB兩種型號(hào)的設(shè)備,每臺(tái)的價(jià)格分別為a萬(wàn)元,b萬(wàn)元,每月處理污水量分別為240噸,200噸.已知購(gòu)買一臺(tái)A型設(shè)備比購(gòu)買一臺(tái)B型設(shè)備多2萬(wàn)元,購(gòu)買2臺(tái)A型設(shè)備比購(gòu)買3臺(tái)B型設(shè)備少6萬(wàn)元.

1)求a,b的值;

2)廠里預(yù)算購(gòu)買污水處理設(shè)備的資金不超過(guò)105萬(wàn)元,你認(rèn)為有哪幾種購(gòu)買方案;

3)在(2)的條件下,若每月要求處理污水量不低于2040噸,為了節(jié)約資金,請(qǐng)你為污水處理廠設(shè)計(jì)一種最省錢的購(gòu)買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,矩形ABCD中,ABBC9,點(diǎn)EBC邊上,BE4,點(diǎn)F,G在線段AD上運(yùn)動(dòng)(點(diǎn)F在點(diǎn)G的左側(cè)),且始終保持FGBE

1)求證:四邊形BEGF是平行四邊形;

2)當(dāng)四邊形BEGF是菱形時(shí),求線段DG的長(zhǎng);

3)將△BEF沿EF折疊得到△B′EF,連結(jié)B′G(如圖2),當(dāng)以點(diǎn)B′G,E,F為頂點(diǎn)的四邊形是矩形時(shí),直接寫出線段DG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線與x軸交于A、B兩點(diǎn),與y軸交C點(diǎn),點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)B的坐標(biāo)為(﹣3,0),點(diǎn)C的坐標(biāo)為(0,3),

(1)求拋物線的解析式;(2)在拋物線的對(duì)稱軸上找一點(diǎn)H,使CH+AH的值最小,求出點(diǎn)H的坐標(biāo);

(3)在拋物線上存在點(diǎn)P,滿足SAOP=5,

請(qǐng)求出點(diǎn)P的坐標(biāo);

查看答案和解析>>

同步練習(xí)冊(cè)答案