【題目】如圖①,平面直角坐標系中,O為原點,點A坐標為(﹣4,0),AB∥y軸,點C在y軸上,一次函數(shù)y=x+3的圖象經過點B、C.
(1)點C的坐標為_____,點B的坐標為_____;
(2)如圖②,直線l經過點C,且與直線AB交于點M,O'與O關于直線l對稱,連接CO'并延長,交射線AB于點D.
①求證:△CMD是等腰三角形;
②當CD=5時,求直線l的函數(shù)表達式.
【答案】 (0,3) (﹣4,2) (2)見解析 (3) y=x+3
【解析】試題分析:(1)設點C的坐標為(0,y),把x=0代入y=x+3中得y=3,即可求出C點的坐標;設點B的坐標為(-4,y),把x=-4代入y=x+3中得y=2,即可求出B點的坐標;
(2)①根據對稱的性質和平行線的性質,推知∠CMD=∠MCD,故MD=CD,所以CMD是等腰三角形;
②如圖②,過點D作DP⊥y軸于點P.利用勾股定理求得CP的長度,然后結合坐標與圖形的性質求得點M的坐標,利用待定系數(shù)法求得直線l的解析式即可.
試題解析:
(1)如圖①,∵A(﹣4,0),AB∥y軸,直線y=x+3經過點B、C,
設點C的坐標為(0,y),把x=0代入y=vx+3x+3中得y=3,
∴C(0,3);
設點B的坐標為(﹣4,y),把x=4代入y=x+3中得y=2,
∴B(﹣4,2);
故答案是:(0,3);(﹣4,2);
(2)①證明:∵AB∥y軸,
∴∠OCM=∠CMD.
∵∠OCM=∠MCD,
∴∠CMD=∠MCD,
∴MD=CD,
∴CMD是等腰三角形;
②如圖②,過點D作DP⊥y軸于點P.
在直角△DCP中,由勾股定理得到:CP==3,
∴OP=AD=CO+CP=3+3=6,
∴AB=AD﹣DM=6﹣5=1,
∴點M的坐標是(﹣4,1).
設直線l的解析式為y=kx+b(k≠0).
把M(﹣4,1)、C(0,3)分別代入,得
,
解得
故直線l的解析式為y=x+3.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,反比例函數(shù)y= (x>0)的圖象與邊長是6的正方形OABC的兩邊AB,BC分別相交于M,N 兩點,△OMN的面積為10.若動點P在x軸上,則PM+PN的最小值是( )
A. 6 B. 10 C. 2 D. 2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把下列各數(shù)填入相應的括號內:11,-,6.5,-8,3,0,1,-1,-3.14.
(1)正數(shù)集合:{ …};(2)負數(shù)集合:{ …};
(3)整數(shù)集合:{ …};(4)正整數(shù)集合:{ …};
(5)負整數(shù)集合:{ …};(6)分數(shù)集合:{ …};
(7)正分數(shù)集合:{ …};(8)負分數(shù)集合:{ …};
(9)有理數(shù)集合:{ …}.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩家超市以相同的價格出售同樣的商品,為了吸引顧客,各自推出不同的優(yōu)惠方案:在甲超市累計購買商品超出300元之后,超出部分按原價8折優(yōu)惠;在乙超市累計購買商品超出200元之后,超出部分按原價8.5折優(yōu)惠.設顧客預計累計購物元().
(1)請用含的代數(shù)式分別表示顧客在兩家超市購物所付的費用;
(2)李明準備購買500元的商品,你認為他應該去哪家超市?請說明理由;
(3)計算一下,李明購買多少元的商品時,到兩家超市購物所付的費用一樣?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,C為線段AB延長線上一點,D為線段BC上一點,CD=2BD,E為線段AC上一點,CE=2AE
(1)若AB=18,BC=21,求DE的長;
(2)若AB=a,求DE的長;(用含a的代數(shù)式表示)
(3)若圖中所有線段的長度之和是線段AD長度的7倍,則的值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】北京召開的國際數(shù)學家大會會徽取材于我國古代數(shù)學家趙爽弦圖它是由四全等的直角三角形與中間的一個小正方形拼成的一個大正方形,如圖所示,如果大正方形 的面積是13,小正方形的面積是1,直角三角形的短直角邊為a,較長直角邊為b,下列說法:
①a2+b2=13;②b2=1;③a2﹣b2=12;④ab=6.
其中正確結論序號是________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=3,AC=4,BC=5,D、E分別是AC、AB的中點,則以DE為直徑的圓與BC的位置關系是( 。
A.相切
B.相交
C.相離
D.無法確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O是以數(shù)軸原點O為圓心,半徑為1的圓,∠AOB=45°,點P在數(shù)軸上運動,過點P且與OB平行的直線與⊙O有公共點,求OP的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,∠A+∠D=180°,∠1=3∠2,∠2=24°,點P是BC上的一點.
(1)請寫出圖中∠1的一對同位角,一對內錯角,一對同旁內角;
(2)求∠EFC與∠E的度數(shù);
(3)若∠BFP=46°,請判斷CE與PF是否平行?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com