已知與是反比例函數(shù)圖象上的兩個(gè)點(diǎn).
(1)求m和k的值
(2)若點(diǎn)C(-1,0),連結(jié)AC,BC,求△ABC的面積
(3)根據(jù)圖象直接寫出一次函數(shù)的值大于反比例函數(shù)的值的的取值范圍.
(1),;(2)3;(3)-1<x<0或x>2.
解析試題分析:(1)把A、B的坐標(biāo)代入反比例函數(shù)解析式得出方程組,求出即可;
(2)求出A、B坐標(biāo),求出直線AB,求出直線AB和x軸交點(diǎn)坐標(biāo),根據(jù)三角形面積公式求出即可;
(3)根據(jù)A、B坐標(biāo)結(jié)合圖象求出即可.
試題解析:(1)∵A與B是反比例函數(shù)圖象上的兩個(gè)點(diǎn),
∴,解得.
∴,.
(2)由(1)得,A的坐標(biāo)是(-1,-2),B的坐標(biāo)是(2,1),
設(shè)直線AB的解析式是y=ax+b,則
,解得:.
∴直線AB的解析式是y=x-1.
當(dāng)y=0時(shí),x=1,即OD=1.
∵C(-1,0),∴CD=2.
∴△ABC的面積是×2×1+×2×2=3.
(3)一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍是-1<x<0或x>2.
考點(diǎn):反比例函數(shù)與一次函數(shù)的交點(diǎn)問題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
爾凡駕車從甲地到乙地,設(shè)他出發(fā)第xmin時(shí)的速度為ykm/h,圖中的折線表示他在整個(gè)駕車過程中y與x之間的函數(shù)關(guān)系.
(1)當(dāng)20≤x≤30時(shí),汽車的平均速度為 km/h,該段時(shí)間行駛的路程為 km;
(2)當(dāng)30≤x≤35時(shí),求y與x之間的函數(shù)關(guān)系式,并求出爾凡出發(fā)第32min時(shí)的速度;
(3)如果汽車每行駛100km耗油8L,那么爾凡駕車從甲地到乙地共耗油多少升?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(0,12),B(16,0),動(dòng)點(diǎn)P從點(diǎn)A開始在線段AO上以每秒1個(gè)單位的速度向點(diǎn)O移動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B開始在BA上以每秒2個(gè)單位的速度向點(diǎn)A移動(dòng),設(shè)點(diǎn)P、Q移動(dòng)的時(shí)間為t秒。
⑴求直線AB的解析式;
⑵求t為何值時(shí),△APQ與△AOB相似?
⑶當(dāng)t為何值時(shí),△APQ的面積為個(gè)平方單位?
⑷當(dāng)t為何值時(shí),△APQ的面積最大,最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
一家圖文廣告公司制作的宣傳畫板頗受商家歡迎,這種畫板的厚度忽略不計(jì),形狀均為正方形,邊長(zhǎng)在10~30dm之間.每張畫板的成本價(jià)(單位:元)與它的面積(單位:dm2)成正比例,每張畫板的出售價(jià)(單位:元)由基礎(chǔ)價(jià)和浮動(dòng)價(jià)兩部分組成,其中基礎(chǔ)價(jià)與畫板的大小無(wú)關(guān),是固定不變的.浮動(dòng)價(jià)與畫板的邊長(zhǎng)成正比例.在營(yíng)銷過程中得到了表格中的數(shù)據(jù).
畫板的邊長(zhǎng)(dm) | 10 | 20 |
出售價(jià)(元/張) | 160 | 220 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,直線AB與坐標(biāo)軸分別交于點(diǎn)A、點(diǎn)B,且OA、OB的長(zhǎng)分別為方程x2-6x+8=0的兩個(gè)根(OA<OB),點(diǎn)C在y軸上,且OA︰AC=2︰5,直線CD垂直于直線AB于點(diǎn)P,交x軸于點(diǎn)D.
(1)求出點(diǎn)A、點(diǎn)B的坐標(biāo).
(2)請(qǐng)求出直線CD的解析式.
(3)若點(diǎn)M為坐標(biāo)平面內(nèi)任意一點(diǎn),在坐標(biāo)平面內(nèi)是否存在這樣的點(diǎn)M,使以點(diǎn)B、P、D、M為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
小文家與學(xué)校相距1000米,某天小文上學(xué)時(shí)忘了帶一本書,走了一段時(shí)間才想起,于是返回家拿書,然后加快速度趕到學(xué)校,下圖是小文與家的距離y(米)關(guān)于時(shí)間x(分鐘)的函數(shù)圖象。請(qǐng)你根據(jù)圖象中給出的信息,解答下列問題:
(1)小文走了多遠(yuǎn)才返回家拿書?
(2)求線段AB所在直線的函數(shù)解析式;
(3)當(dāng)x=8分鐘時(shí),求小文與家的距離。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,直線y=-x+8與x軸、y軸分別相交于點(diǎn)A、B,設(shè)M是OB上一點(diǎn),若將△ABM沿AM折疊,使點(diǎn)B恰好落在x軸上的點(diǎn)B'處.
求: (1)點(diǎn)B'的坐標(biāo): .(2分)
(2)直線AM所對(duì)應(yīng)的函數(shù)關(guān)系式.(8分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知反比例函數(shù)與一次函數(shù)的圖象在第一象限相交于點(diǎn)A(1,),
(1)試確定這兩個(gè)函數(shù)的表達(dá)式;
(2)求出這兩個(gè)函數(shù)圖像的另一個(gè)交點(diǎn)B的坐標(biāo),并根據(jù)圖象寫出使一次函數(shù)的值小于反比例函數(shù)值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
某物體從P點(diǎn)運(yùn)動(dòng)到Q點(diǎn)所用時(shí)間為7秒,其運(yùn)動(dòng)速度v(米每秒)關(guān)于時(shí)間t(秒)的函數(shù)關(guān)系如圖所示.某學(xué)習(xí)小組經(jīng)過探究發(fā)現(xiàn):該物體前進(jìn)3秒運(yùn)動(dòng)的路程在數(shù)值上等于矩形AODB的面積.由物理學(xué)知識(shí)還可知:該物體前t(3<t≤7)秒運(yùn)動(dòng)的路程在數(shù)值上等于矩形AODB的面積與梯形BDNM的面積之和.
根據(jù)以上信息,完成下列問題:
(1)當(dāng)3<t≤7時(shí),用含t的式子表示v;
(2)分別求該物體在0≤t≤3和3<t≤7時(shí),運(yùn)動(dòng)的路程s(米)關(guān)于時(shí)間t(秒)的函數(shù)關(guān)系式;
(3)求該物體從P點(diǎn)運(yùn)動(dòng)到Q總路程的時(shí)所用的時(shí)間.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com