【題目】如圖,平行四邊形ABCD的對角線AC、BD相交于點(diǎn)O,E,F(xiàn)分別是OA,OC的中點(diǎn),連接BE,DF

(1)根據(jù)題意,補(bǔ)全原形;

(2)求證:BE=DF.

【答案】(1)作圖見解析;(2)證明見解析

【解析】

試題分析:(1)如圖所示;

(2)由全等三角形的判定定理SAS證得△BEO≌△DFO,得出全等三角形的對應(yīng)邊相等即可.

試題解析:(1)解:如圖所示:

(2)證明:∵四邊形ABCD是平行四邊形,對角線AC、BD交于點(diǎn)O,∴OB=OD,OA=OC.

又∵E,F(xiàn)分別是OA、OC的中點(diǎn),∴OE=OA,OF=OC,∴OE=OF.

在△BEO與△DFO中,OE=OF,BOE=DOF,OB=OD,∴△BEO≌△DFO(SAS),∴BE=DF.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=3(x -5)2的圖象上有兩點(diǎn)P(2,y1),Q(6,y2),則y1y2的大小關(guān)系是__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=CB,以AB為直徑的⊙O交AC于點(diǎn)D,點(diǎn)E是AB邊上一點(diǎn)(點(diǎn)E不與點(diǎn)A、B重合),DE的延長線交⊙O于點(diǎn)G,DF⊥DG,且交BC于點(diǎn)F.

(1)求證:AE=BF;

(2)連接GB,EF,求證:GB∥EF;

(3)若AE=1,EB=2,求DG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD的對角線AC,BD交于點(diǎn)O,△AOD是正三角形,AD=4,則平行四邊形ABCD的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】化簡求值:已知:(x﹣3)2 =0,求3x2y﹣[2xy2﹣2(xy﹣ )+3xy]+5xy2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,∠ABD的平分線BE交AD于點(diǎn)E,∠CDB的平分線DF交BC于點(diǎn)F,連接BD.

(1)求證:△ABE≌△CDF;

(2)若AB=DB,求證:四邊形DFBE是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果兩個(gè)數(shù)m、n互為相反數(shù),那么下列結(jié)論不正確的是( )
A.m+n=0
B.
C.|m|=|n|
D.數(shù)軸上,表示這兩個(gè)數(shù)的點(diǎn)到原點(diǎn)的距離相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】①如圖1:A、B是兩個(gè)蓄水池,都在河流a的同側(cè),為了方便灌溉作物,要在河邊建一個(gè)抽水站,將河水送到A、B兩地,問該站建在河邊什么地方,可使所修的渠道最短,試在圖中確定該點(diǎn)的位置(保留作圖痕跡).
②如圖2:某地有兩個(gè)工廠M、N和兩條相交叉的公路a,b現(xiàn)計(jì)劃修建一座物資倉庫,希望倉庫到兩個(gè)工廠的距離相等,到兩條公路的距離也相等.你能確定倉庫應(yīng)該建在什么位置嗎?在所給的圖形中畫出你的設(shè)計(jì)方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知直線PQ∥MN,點(diǎn)A在直線PQ上,點(diǎn)C、D在直線MN上,連接AC、AD,∠PAC=50°,∠ADC=30°,AE平分∠PAD,CE平分∠ACD,AE與CE相交于E.
(1)求∠AEC的度數(shù);
(2)若將圖1中的線段AD沿MN向右平移到A1D1如圖2所示位置,此時(shí)A1E平分∠AA1D1 , CE平分∠ACD1 , A1E與CE相交于E,∠PAC=50°,∠A1D1C=30°,求∠A1EC的度數(shù).
(3)若將圖1中的線段AD沿MN向左平移到A1D1如圖3所示位置,其他條件與(2)相同,求此時(shí)∠A1EC的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案