已知:P=,Q=(x+y)2-2y(x+y).小敏、小聰兩人在x=2,y=-1的條件下分別計(jì)算了P和Q的值,小敏說(shuō)P的值比Q大,小聰說(shuō)Q的值比P大,請(qǐng)你判斷誰(shuí)的結(jié)論正確,并說(shuō)明理由.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源:活學(xué)巧練七年級(jí)數(shù)學(xué)下 題型:044
如圖,已知,△ABC中,BD、CE分別是△ABC兩條角平分線,相交于點(diǎn)O.
(1)當(dāng)∠ABC=時(shí),∠ACB=時(shí),∠ABC+∠ACB=,(∠ABC+∠ACB)=,∠BOC=.
(2)當(dāng)∠A=時(shí),∠ABC+∠ACB=,(∠ACB+∠ABC)=,∠BOC=.
(3)當(dāng)∠A=時(shí),(∠ABC+∠ACB)=,∠BOC=.
(4)從上述計(jì)算過(guò)程中,我們能得到∠BOC與∠A的關(guān)系式為∠BOC=,若∠A=時(shí),應(yīng)用上面公式可知∠BOC=,若∠BOC=,則可求出∠A=.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:解題升級(jí) 解題快速反應(yīng)一典通 九年級(jí)級(jí)數(shù)學(xué) 題型:044
已知拋物線y=x2-(2m+4)x+m2-10與x軸交于A、B兩點(diǎn),C是拋物線的頂點(diǎn).
(1)用配方法求頂點(diǎn)C的坐標(biāo)(用含有m的代數(shù)式表示);
(2)“若AB的長(zhǎng)為2,求拋物線的解析式”的解法如下:
由(1)知,對(duì)稱軸與x軸交于點(diǎn)D(________,0).
∵拋物線具有對(duì)稱性,且AB=2,
∴AD=DB=|xA-xD|=.
∵A(xA,0)在拋物線y=(x-h(huán))2+k上,
∴(xA-h(huán))2+k=0. 、
∵h(yuǎn)=xC=xD,
∴將|xA-xD|=代入①,得到關(guān)于m的方程0=()2+(________). 、
補(bǔ)全解題過(guò)程,并簡(jiǎn)述步驟①的解題依據(jù),步驟②的解題方法.
(3)將(2)中條件“AB的長(zhǎng)為2”改為“△ABC為等邊三角形”,用類似的方法求出拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:學(xué)習(xí)周報(bào) 數(shù)學(xué) 滬科九年級(jí)版 2009-2010學(xué)年 第5期 總第161期 滬科版 題型:013
已知線段
a=20 mm,b=6 cm,c=4 cm,d=3 cm,那么下列各式成立的是=
=
=
=
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年廣西柳州市畢業(yè)升學(xué)模擬考試數(shù)學(xué)試卷(解析版) 題型:解答題
已知拋物線y=ax2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,其中點(diǎn)B在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,線段OB、OC的長(zhǎng)(OB<OC)是方程x2-10x+16=0的兩個(gè)根,且拋物線的對(duì)稱軸是直線x=-2.
(1)求此拋物線的解析式;
(2)連接AC、BC,若點(diǎn)E是線段AB上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)A、點(diǎn)B不重合),過(guò)點(diǎn)E作EF∥AC交BC于點(diǎn)F,連接CE,設(shè)AE的長(zhǎng)為m,△CEF的面積為S,求S與m之間的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
(3)在(2)的基礎(chǔ)上試說(shuō)明S是否存在最大值,若存在,請(qǐng)求出S的最大值,并求出此時(shí)點(diǎn)E的坐標(biāo),判斷此時(shí)△BCE的形狀;若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年四川樂(lè)山市區(qū)中考模擬數(shù)學(xué)試卷(解析版) 題型:解答題
在課外小組活動(dòng)時(shí),小偉拿來(lái)一道題(原問(wèn)題)和小熊、小強(qiáng)交流.
原問(wèn)題:如圖1,已知△ABC, ∠ACB=90° , ∠ABC=45°,分別以AB、BC為邊向外作△ABD與△BCE, 且DA=DB, EB=EC,∠ADB=∠BEC=90°,連接DE交AB于點(diǎn)F. 探究線段DF與EF的數(shù)量關(guān)系.小偉同學(xué)的思路是:過(guò)點(diǎn)D作DG⊥AB于G,構(gòu)造全等三角形,通過(guò)推理使問(wèn)題得解.小熊同學(xué)說(shuō):我做過(guò)一道類似的題目,不同的是∠ABC=30°,∠ADB=∠BEC=60°.小強(qiáng)同學(xué)經(jīng)過(guò)合情推理,提出一個(gè)猜想,我們可以把問(wèn)題推廣到一般情況.請(qǐng)你參考小慧同學(xué)的思路,探究并解決這三位同學(xué)提出的問(wèn)題:
1.寫出原問(wèn)題中DF與EF的數(shù)量關(guān)系
2.如圖2,若∠ABC=30°,∠ADB=∠BEC=60°,原問(wèn)題中的其他條件不變,你在(1)中得到的結(jié)論是否發(fā)生變化?請(qǐng)寫出你的猜想并加以證明;
3.如圖3,若∠ADB=∠BEC=2∠ABC,原問(wèn)題中的其他條件不變,你在(1)中
得到的結(jié)論是否發(fā)生變化?請(qǐng)寫出你的猜想并加以證明
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com