【題目】四邊形ABCD的對(duì)角線交于點(diǎn)E,有AE=EC,BE=ED,以AB為直徑的⊙O過點(diǎn)E.
(1)求證:四邊形ABCD的是菱形;
(2)若CD的延長線與圓相切于點(diǎn)F,已知直徑AB=4,求陰影部分的面積.
【答案】
(1)證明:
∵AE=CE,BE=ED,
∴四邊形ABCD是平行四邊形,
∵AB為直徑,
∴∠AEB=90°,
即AC⊥BD,
∴四邊形ABCD是菱形
(2)解:連接OF,
∵CF為⊙O的切線,
∴∠OFC=90°,
∵AB=4,
∴OA=OB=2,
∵四邊形ABCD是菱形,
∴AB=AD=4,
過D作DH⊥AB于H,
則DH=OF=2,
∠DAH=30°,
∵四邊形ABCD是菱形,
∴∠DAC=∠BAC=15°,
∴∠BOE=2∠BAC=30°,
∴S扇形BOE= = ,S△AOE= =1,
∴S陰影=S半圓O﹣S△AOE﹣S扇形BOE= ﹣1﹣ = π﹣1
【解析】(1)根據(jù)平行四邊形的判定得出四邊形ABCD是平行四邊形,再根據(jù)菱形的判定得出即可;(2)連接OF,過D作DH⊥AB于H,分別求出扇形BOE、△AOE、半圓O的面積,即可得出答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下圖是由幾個(gè)相同的小正方體搭成的幾何體,
(1)搭成這個(gè)幾何體需要 個(gè)小正方體;
(2)畫出這個(gè)幾何體的主視圖和左視圖;
(3)在保持主視圖和左視圖不變的情況下,最多可以拿掉n個(gè)小正方體,則n= ,請?jiān)趥溆脠D中畫出拿掉n個(gè)小正方體后新的幾何體的俯視圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,已知∠B和∠C的平分線相交于點(diǎn)F,經(jīng)過點(diǎn)F作DE//BC,交AB于D,交AC于點(diǎn)E,若BD+CE=9,則線段DE的長為( )
A. 9 B. 8 C. 7 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線a∥b,直角三角形如圖放置,若∠1+∠A=65°,則∠2的度數(shù)為( )
A.15°
B.20°
C.25°
D.30°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,若一次函數(shù)的圖象與x軸的交于點(diǎn),與y軸交于點(diǎn)下列結(jié)論:①關(guān)于x的方程的解為;②隨x的增大而減;③關(guān)于x的方程的解為;④關(guān)于x的不等式的解為其中所有正確的為
A. ①②③ B. ①③ C. ①②④ D. ②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,點(diǎn)D,E分別是邊BC,AC的中點(diǎn),AD與BE相交于點(diǎn)點(diǎn)F,G分別是線段AO,
BO的中點(diǎn).
求證:四邊形DEFG是平行四邊形;
如圖2,連接CO,若,求證:四邊形DEFG是菱形;
在的前提下,當(dāng)滿足什么條件時(shí),四邊形DEFG能成為正方形?直接回答即可,不必證明
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O為線段AD外一點(diǎn),M、C、B、N為AD上任意四點(diǎn),連接OM、OC、OB、ON,下列結(jié)論不正確的是( )
A. 以O為頂點(diǎn)的角共有15個(gè)
B. 若OM平分∠AOC,ON平分∠BOD,∠AOD=5∠COB,則∠MON=(∠MOC+∠BON)
C. 若M為AB中點(diǎn),N為CD中點(diǎn),則MN=(AD-CB)
D. 若MC=CB,MN=ND,則CD=2CN
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB、CD為兩個(gè)建筑物,建筑物AB的高度為60米,從建筑物AB的頂點(diǎn)A點(diǎn)測得建筑物CD的頂點(diǎn)C點(diǎn)的俯角∠EAC為30°,測得建筑物CD的底部D點(diǎn)的俯角∠EAD為45°.
(1)求兩建筑物底部之間水平距離BD的長度;
(2)求建筑物CD的高度(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用一條長為18cm的細(xì)繩圍成一個(gè)等腰三角形.
(1)如果腰長是底邊長的2倍,求三角形各邊的長;
(2)能圍成有一邊的長是4cm的等腰三角形嗎?若能,求出其他兩邊的長;若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com