某數(shù)學(xué)興趣小組對(duì)線段上的動(dòng)點(diǎn)問題進(jìn)行探究,已知AB=8.
問題思考:
如圖1,點(diǎn)P為線段AB上的一個(gè)動(dòng)點(diǎn),分別以AP、BP為邊在同側(cè)作正方形APDC與正方形PBFE.
(1)在點(diǎn)P運(yùn)動(dòng)時(shí),這兩個(gè)正方形面積之和是定值嗎?如果時(shí)求出;若不是,求出這兩個(gè)正方形面積之和的最小值.
(2)分別連接AD、DF、AF,AF交DP于點(diǎn)A,當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),在△APK、△ADK、△DFK中,是否存在兩個(gè)面積始終相等的三角形?請(qǐng)說明理由.

問題拓展:
(3)如圖2,以AB為邊作正方形ABCD,動(dòng)點(diǎn)P、Q在正方形ABCD的邊上運(yùn)動(dòng),且PQ=8.若點(diǎn)P從點(diǎn)A出發(fā),沿A→B→C→D的線路,向D點(diǎn)運(yùn)動(dòng),求點(diǎn)P從A到D的運(yùn)動(dòng)過程中,PQ的中點(diǎn)O所經(jīng)過的路徑的長。
(4)如圖(3),在“問題思考”中,若點(diǎn)M、N是線段AB上的兩點(diǎn),且AM=BM=1,點(diǎn)G、H分別是邊CD、EF的中點(diǎn).請(qǐng)直接寫出點(diǎn)P從M到N的運(yùn)動(dòng)過程中,GH的中點(diǎn)O所經(jīng)過的路徑的長及OM+OB的最小值.
   
(1)當(dāng)x=4時(shí),這兩個(gè)正方形面積之和有最小值,最小值為32;
(2)存在兩個(gè)面積始終相等的三角形,圖形見解析;
(3)PQ的中點(diǎn)O所經(jīng)過的路徑的長為6π;
(4)點(diǎn)O所經(jīng)過的路徑長為3,OM+OB的最小值為

試題分析:(1)設(shè)AP=x,則PB=1-x,根據(jù)正方形的面積公式得到這兩個(gè)正方形面積之和=x2+(8-x)2,配方得到2(x-4)2+32,然后根據(jù)二次函數(shù)的最值問題求解;
(2)根據(jù)PE∥BF求得PK=,進(jìn)而求得DK=PD-PK=a-=,然后根據(jù)面積公式即可求得;
(3)PQ的中點(diǎn)O所經(jīng)過的路徑是三段半徑為4,圓心角為90°的圓;
(4)GH中點(diǎn)O的運(yùn)動(dòng)路徑是與AB平行且距離為3的線段XY上,然后利用軸對(duì)稱的性質(zhì),求出OM+OB的最小值.
試題解析:(1)當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),這兩個(gè)正方形的面積之和不是定值.
設(shè)AP=x,則PB=8-x,
根據(jù)題意得這兩個(gè)正方形面積之和=x2+(8-x)2=2x2-16x+64=2(x-4)2+32,
所以當(dāng)x=4時(shí),這兩個(gè)正方形面積之和有最小值,最小值為32;
(2)存在兩個(gè)面積始終相等的三角形,它們是△APK與△DFK.
依題意畫出圖形,如圖所示.

設(shè)AP=a,則PB=BF=8-a.
∵PE∥BF,

,
∴PK=
∴DK="PD-PK=" a-=,
∴SAPK=PK•PA=•a=,SDFK=DK•EF=•(8-a)=,
∴SAPK=SDFK
(3)當(dāng)點(diǎn)P從點(diǎn)A出發(fā),沿A→B→C→D的線路,向點(diǎn)D運(yùn)動(dòng)時(shí),不妨設(shè)點(diǎn)Q在DA邊上,
若點(diǎn)P在點(diǎn)A,點(diǎn)Q在點(diǎn)D,此時(shí)PQ的中點(diǎn)O即為DA邊的中點(diǎn);
若點(diǎn)Q在DA邊上,且不在點(diǎn)D,則點(diǎn)P在AB上,且不在點(diǎn)A.
此時(shí)在Rt△APQ中,O為PQ的中點(diǎn),所以AO=PQ=4.
所以點(diǎn)O在以A為圓心,半徑為4,圓心角為90°的圓弧上.
PQ的中點(diǎn)O所經(jīng)過的路徑是三段半徑為4,圓心角為90°的圓弧,如圖所示:

所以PQ的中點(diǎn)O所經(jīng)過的路徑的長為:×2π×4=6π;
(4)點(diǎn)O所經(jīng)過的路徑長為3,OM+OB的最小值為
如圖,分別過點(diǎn)G、O、H作AB的垂線,垂足分別為點(diǎn)R、S、T,則四邊形GRTH為梯形.

∵點(diǎn)O為中點(diǎn),
∴OS=(GR+HT)=(AP+PB)=4,即OS為定值.
∴點(diǎn)O的運(yùn)動(dòng)路徑在與AB距離為4的平行線上.
∵M(jìn)N=6,點(diǎn)P在線段MN上運(yùn)動(dòng),且點(diǎn)O為GH中點(diǎn),
∴點(diǎn)O的運(yùn)動(dòng)路徑為線段XY,XY=MN=3,XY∥AB且平行線之間距離為4,點(diǎn)X與點(diǎn)A、點(diǎn)Y與點(diǎn)B之間的水平距離均為2.5.
如圖,作點(diǎn)M關(guān)于直線XY的對(duì)稱點(diǎn)M′,連接BM′,與XY交于點(diǎn)O.

由軸對(duì)稱性質(zhì)可知,此時(shí)OM+OB=BM′最小.
在Rt△BMM′中,由勾股定理得:BM′=
∴OM+OB的最小值為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知∠MON=90°,A是∠MON內(nèi)部的一點(diǎn),過點(diǎn)A作AB⊥ON,垂足為點(diǎn)B,AB=3厘米,OB=4厘米,動(dòng)點(diǎn)E,F(xiàn)同時(shí)從O點(diǎn)出發(fā),點(diǎn)E以1.5厘米/秒的速度沿ON方向運(yùn)動(dòng),點(diǎn)F以2厘米/秒的速度沿OM方向運(yùn)動(dòng),EF與OA交于點(diǎn)C,連接AE,當(dāng)點(diǎn)E到達(dá)點(diǎn)B時(shí),點(diǎn)F隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0).
(1)當(dāng)t=1秒時(shí),△EOF與△ABO是否相似?請(qǐng)說明理由;
(2)在運(yùn)動(dòng)過程中,不論t取何值時(shí),總有EF⊥OA.為什么?
(3)連接AF,在運(yùn)動(dòng)過程中,是否存在某一時(shí)刻t,使得SAEF=S四邊形ABOF?若存在,請(qǐng)求出此時(shí)t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,菱形ABCD的邊長為4,∠BAD=120°,點(diǎn)E是AB的中點(diǎn),點(diǎn)F是AC上的一動(dòng)點(diǎn),則EF+BF的最小值是            

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知平行四邊形ABCD中,AC,BD交于點(diǎn)O,若AB=6,AC=8,則BD的取值范圍是     .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在?ABCD中,AD=6,AB=4,DE平分∠ADC交BC于點(diǎn)E,則BE的長是( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,?ABCD的對(duì)角線相交于點(diǎn)O,且兩條對(duì)角線長的和為36,△OCD的周長為23,則AB的長為(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

用矩形紙片折出直角的平分線,下列折法正確的是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,要使平行四邊形ABCD是矩形,則應(yīng)添加的條件是     (添加一個(gè)條件即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,兩個(gè)平行四邊形的面積分別為18、12,兩陰影部分的面積分別為a、b(a>b),則(a-b)等于(  )
A.4B.5C.6D.7

查看答案和解析>>

同步練習(xí)冊(cè)答案