【題目】如圖,某校綜合實踐活動小組的同學欲測量公園內一棵樹DE的高度,他們在這棵樹正前方一座樓亭前的臺階上A點處測得樹頂端D的仰角為30°,朝著這棵樹的方向走到臺階下的點C處,測得樹頂端D的仰角為60°.已知A點的高度AB2m,臺階AC的坡度為1,且B,C,E三點在同一條直線上.請根據(jù)以上條件求出樹DE的高度(測傾器的高度忽略不計).

【答案】樹DE的高度為6米.

【解析】試題分析:由于AFAB,則四邊形ABEF為矩形,設DE=x,在RtCDE中,CE═== ,在RtABC中,得到,求出BC,在RtAFD中,求出AF,由AF=BC+CE即可求出x的長.

試題解析:∵AF⊥AB,AB⊥BE,DE⊥BE

四邊形ABEF為矩形,

∴AF=BE,EF=AB=2

DE=x,在RtCDE中,CE=== ,

Rt△ABC中,

AB=2,

BC=2

Rt△AFD中,DF=DE-EF=x-2

AF=,

∵AF=BE=BC+CE

,

解得x=6

答:樹DE的高度為6米.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】分解因式m﹣ma2的結果是( 。
A.m(1+a)(1﹣a)
B.m(1+a)2
C.mm(1﹣a)2
D.(1﹣a)(1+a)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】( 2 4 )x軸的距離為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列命題的逆命題一定成立的是 ( )

①對頂角相等; ②同位角相等,兩直線平行;③全等三角形的周長相等;④面積相等的兩個三角形全等

A. ①②③ B. ①④ C. ②④ D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小麗的家和學校在一條筆直的馬路旁,某天小麗沿著這條馬路上學,先從家步行到公交站臺甲,再乘車到公交站臺乙下車,最后步行到學校(在整個過程中小麗步行的速度不變),圖中折線ABCDE表示小麗和學校之間的距離y(米)與她離家時間x(分鐘)之間的函數(shù)關系.

(1)求小麗步行的速度及學校與公交站臺乙之間的距離;
(2)當8≤x≤15時,求y與x之間的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,下列條件中,不能證明△ABC≌△DCB的是( )

A.AB=CD,AC=BD
B.AB=CD,∠ABC=∠BCD
C.∠ABC=∠DCB,∠A=∠D
D.AB=CD,∠A=∠D

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場購進一種每件價格為100元的新商品,在商場試銷發(fā)現(xiàn):銷售單價x(元/件)與每天銷售量y(件)之間滿足如圖所示的關系:

(1)求出y與x之間的函數(shù)關系式;

(2)寫出每天的利潤W與銷售單價x之間的函數(shù)關系式;若你是商場負責人,會將售價定為多少,來保證每天獲得的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將多項式﹣5a2bc+3ab2﹣abc各項提公因式后,另一個因式是( 。

A.5ac﹣3ab+c
B.5bc﹣3b+c
C.﹣5ac+3b+c
D.﹣5bc+3b+c

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在Rt△ABC中,AB=AC,∠BAC=90°,O為BC的中點。

(1)寫出點O到△ABC的三個頂點A、B、C的距離的大小關系并說明理由;
(2)如果點M、N分別在線段AB、AC上移動,在移動中保持AN=BM,請判斷△OMN的形狀,并證明你的結論。

查看答案和解析>>

同步練習冊答案