【題目】如圖,CEBF,CE=BF.則添加下列條件還不能使△EAC≌△FDB.(  )

A. AB=CDB. AEDFC. E=∠FD. AE=DF

【答案】D

【解析】

根據(jù)三角形全等的判定定理進行判斷即可.

CEBF,

∴∠ACB=DBF.

A.∵AB=CD,

∴AC=DB,

又∵∠ACB=DBF,

CE=BF,

∴△EAC≌△FDBSAS),故A不符合題意;

B.∵AE∥DF,

∴∠A=∠D,

又∵∠ACB=DBF,

CE=BF,

∴△EAC≌△FDBAAS),故B不符合題意;

C. ∵∠ACB=DBF,

∠E=∠F,

CE=BF,

∴△EAC≌△FDBAAS),故C不符合題意;

D.當(dāng)AE=DF時,不能使△EAC≌△FDB

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題一:如圖1,已知AC=160km,甲,乙兩人分別從相距30kmA,B兩地同時出發(fā)到C地,若甲的速度為80km/h,乙的速度為60km/h,設(shè)乙行駛時間為xh, 兩車之間距離為ykm.

(1)當(dāng)甲追上乙時,x= .

(2)請用x的代數(shù)式表示y.

問題二:如圖2,若將上述線段AC彎曲后視作鐘表外圍的一部分,線段AB正好對應(yīng)鐘表上的弧AB1小時的間隔),易知AOB=30°.

(1)分針OD指向圓周上的點的速度為每分鐘轉(zhuǎn)動 km;時針OE指向圓周上的點的速度為每分鐘轉(zhuǎn)動 km.

(2)若從2:00起計時,求幾分鐘后分針與時針第一次重合?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某居民小區(qū)的一處圓柱形的輸水管道破裂,維修人員為更換管道,需要確定管道圓形截面的半徑.如圖,若這個輸水管道有水部分的水面寬AB=16cm,水最深的地方的高度為4cm,求這個圓形截面的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用方程解答下列問題

1)一件工作,甲單獨做20小時完成,乙單獨做12小時完成,現(xiàn)在先由甲單獨做4小時,余下的由甲乙一起完成余下的部分需要幾小時完成?

2)王強參加了一場3000米的賽跑,他以6/秒的速度跑了一段路程,又以4/秒的速度跑完了其余的路程,一共花了10分鐘,王強以6米秒的速度跑了多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A、B、C三點在同一條直線上,若AB=10cm,BC=4cmD是線段AC的中點,則AD的長為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖各圖是棱長為1cm的小正方體擺成的,如圖①中,從正面看有1個正方形,表面積為6cm2;如圖②中,從正面看有3個正方形,表面積為18cm2;如圖③,從正面看有6個正方形,表面積為36cm2

(1)6個圖中,從正面看有多少個正方形?表面積是多少?

(2)n個圖形中,從正面看有多少個正方形?表面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,E,G分別在邊DA,DC上(不與端點重合),且DE=DG,過D點作DFCE,垂足為F.

(1)①∠BCE與∠CDF的大小關(guān)系是_______________;

②證明:GFBF;

(2)探究G落在邊DC的什么位置時,BF=BC,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下圖是昌平區(qū)20191月份每天的最低和最高氣溫,觀察此圖,下列說法正確的是( )

A.1月份中,最高氣溫為10℃,最低氣溫為-2℃

B.10號至16號的氣溫中,每天溫差最小為7℃

C.每天的最高氣溫均高于0℃,最低氣溫均低于0℃

D.每天的最高氣溫與最低氣溫都是具有相反意義的量

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點E,F在菱形ABCD的對邊上,AEBC.∠1=∠2

1)判斷四邊形AECF的形狀,并證明你的結(jié)論.

2)若AE4,AF2,試求菱形ABCD的面積.

查看答案和解析>>

同步練習(xí)冊答案