【題目】如圖,點EF在菱形ABCD的對邊上,AEBC.∠1=∠2

1)判斷四邊形AECF的形狀,并證明你的結(jié)論.

2)若AE4,AF2,試求菱形ABCD的面積.

【答案】四邊形AECF是矩形,理由見解析;(2)菱形ABCD的面積=20.

【解析】

1)由菱形的性質(zhì)可得AD=BCADBC,∠BAD=BCD,由∠1=2可得∠EAF=FCB=90°=AEC,可得四邊形AECF是矩形;
2)由勾股定理可求AB的值,由菱形的面積公式可求解.

解:(1)四邊形AECF是矩形
理由如下:
∵四邊形ABCD是菱形
AD=BC=ABADBC,∠BAD=BCD,
AEBC
AEAD
∴∠FAE=AEC=90°
∵∠1=2
∴∠BAD-1=BCD-2
∴∠EAF=FCB=90°=AEC
∴四邊形AECF是矩形
2)∵四邊形AECF是矩形
AF=EC=2
RtABE中,AB2=AE2+BE2
AB2=16+AB-22,
AB=5
∴菱形ABCD的面積=5×4=20

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CEBF,CE=BF.則添加下列條件還不能使△EAC≌△FDB.(  )

A. AB=CDB. AEDFC. E=∠FD. AE=DF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,點A,BC是數(shù)軸上的三個點,其中AB12,且AB兩點表示的數(shù)互為相反數(shù).

1)請在數(shù)軸上標(biāo)出原點O,并寫出點A表示的數(shù);

2)如果點Q以每秒2個單位的速度從點B出發(fā)向左運動,那么經(jīng)過 秒時,點C恰好是BQ的中點;

3)如果點P以每秒1個單位的速度從點A出發(fā)向右運動,那么經(jīng)過多少秒時PC2PB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在四邊形ABCD中,AD∥BC,∠A=∠C,點P在邊AB上.

(1)求證:四邊形ABCD是平行四邊形;

(2)若AB=AD,以過點P的直線為軸,將四邊形ABCD折疊,使點B、C分別落在點B′、C′上,且B′C′經(jīng)過點D,折痕與四邊形的另一交點為Q.在圖2中作出四邊形PB′C′Q(保留作圖痕跡,不必說明作法和理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國民體質(zhì)監(jiān)測中心等機構(gòu)開展了青少年形體測評.專家組隨機抽查了某市若干名初中學(xué)生坐姿、站姿、走姿的好壞情況.我們對專家的測評數(shù)據(jù)作了適當(dāng)處理(如果一個學(xué)生有一種以上不良姿勢,我們以他最突出的一種作記載),并將統(tǒng)計結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中所給信息解答下列問題:

1】請將兩幅統(tǒng)計圖補充完整;

2】在這次形體測評中,一共抽查了 名學(xué)生,如果全市有10萬名初中生,那么全市初中生中,三姿良好的學(xué)生約有 人;

3】根據(jù)統(tǒng)計結(jié)果,請你簡單談?wù)勛约旱目捶?/span>.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,經(jīng)過點A6,0)的直線ykx3與直線y=﹣x交于點B,點P從點O出發(fā)以每秒1個單位長度的速度向點A勻速運動.

1)求點B的坐標(biāo);

2)當(dāng)△OPB是直角三角形時,求點P運動的時間;

3)當(dāng)BP平分△OAB的面積時,直線BPy軸交于點D,求線段BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某縣為創(chuàng)建省文明衛(wèi)生城市,計劃將城市道路兩旁的人行道進行改造,經(jīng)調(diào)查可知,若該工程由甲工程隊單獨來做恰好在規(guī)定時間內(nèi)完成;若該工程由乙工程隊單獨完成,則需要的天數(shù)是規(guī)定時間的2倍,若甲、乙兩工程隊合作6天后,余下的工程由甲工程隊單獨來做還需3天完成.

(1)問該縣要求完成這項工程規(guī)定的時間是多少天?

(2)已知甲工程隊做一天需付給工資5萬元,乙工程隊做一天需付給工資3萬元.現(xiàn)該工程由甲、乙兩個工程隊合作完成,該縣準(zhǔn)備了工程工資款65萬元.請問該縣準(zhǔn)備的工程工資款是否夠用?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AD是BC邊上的高,BE平分∠ABC交AC邊于E,兩線相交于F點.

(1)若∠BAC=60°,∠C=70°,求∠AFB的大;

(2)若D是BC的中點,∠ABE=30°,求證:△ABC是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖像分別與x軸、y軸交于點A、B,以線段AB為腰在第二象限內(nèi)作等腰RtABC,∠BAC90°

1)直接寫出A、B兩點的坐標(biāo),并求線段AB的長;

2)求過B、C兩點的直線的函數(shù)表達式.

查看答案和解析>>

同步練習(xí)冊答案