【題目】把下列各數(shù)分別填在相應(yīng)的集合里:
整數(shù){ …},
正數(shù){ …},
非負(fù)數(shù){ …},
分?jǐn)?shù){ …},
正有理數(shù){ …}。
【答案】-12,-5,0,3;4.5,+5.7, ,3,π,10%,;4.5,+5.7,0,,3,π,10%,;4.5,+5.7,,,-3.14,10%,;4.5,+5.7,,3,10%,.
【解析】
根據(jù)整數(shù)、正數(shù)、非負(fù)數(shù)、分?jǐn)?shù)等定義即可判斷.
解:整數(shù){-12,-5,0,3…}
正數(shù){4.5,+5.7, ,3,π,10%,…}
非負(fù)數(shù){ 4.5,+5.7,0,,3,π,10%,…}
分?jǐn)?shù){ 4.5,+5.7,,,-3.14,10%,…}
正有理數(shù){ 4.5,+5.7,,3,10%,…}.
故答案為: -12,-5,0,3;4.5,+5.7, ,3,π,10%,;4.5,+5.7,0,,3,π,10%,;4.5,+5.7,,,-3.14,10%,;4.5,+5.7,,3,10%,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,B,P,A,C是圓上的點(diǎn),PB= PC, PD⊥CD,CD交⊙O于A,若AC=AD,PD =,sin∠PAD =,則△PAB的面積為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=mx2+6mx+n(m>0)與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),頂點(diǎn)為C,拋物線與y軸交于點(diǎn)D,直線BC交y軸于E,S△ABC:S△AEC = 2∶3.
(1)求點(diǎn)A的坐標(biāo);
(2)將△ACO繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一定角度后,點(diǎn)A與B重合,此時(shí)點(diǎn)O恰好也在y軸上,求拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)的圖像經(jīng)過點(diǎn)M(-1,3)、N(1,5)。直線MN與坐標(biāo)軸相交于點(diǎn)A、B兩點(diǎn).
(1)求一次函數(shù)的解析式.
(2)如圖,點(diǎn)C與點(diǎn)B關(guān)于x軸對稱,點(diǎn)D在線段OA上,連結(jié)BD,把線段BD順時(shí)針方向旋轉(zhuǎn)90°得到線段DE,作直線CE交x軸于點(diǎn)F,求的值.
(3)如圖,點(diǎn)P是直線AB上一動(dòng)點(diǎn),以OP為邊作正方形OPNM,連接ON、PM交于點(diǎn)Q,連BQ,當(dāng)點(diǎn)P在直線AB上運(yùn)動(dòng)時(shí),的值是否會(huì)發(fā)生變化,若不變,請求出其值;若變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形中,=60°, AB=2,點(diǎn)E是AB上的動(dòng)點(diǎn),作∠EDQ=60°交BC于點(diǎn)Q,點(diǎn)P在AD上,PD=PE.
(1)求證:AE=BQ;
(2)連接PQ, EQ,當(dāng)∠PEQ=90°時(shí),求的值;
(3)當(dāng)AE為何值時(shí),△PEQ是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料并回答問題
觀察:有理數(shù)-2和-4在數(shù)軸上對應(yīng)的兩點(diǎn)之間的距離是,有理數(shù)1和-3在數(shù)軸上對應(yīng)的兩點(diǎn)之間的距離是
歸納:有理數(shù)a、b在數(shù)軸上對應(yīng)的兩點(diǎn)A.B之間的距離是,反之,表示有理數(shù)a、b在數(shù)軸上對應(yīng)點(diǎn)A.B之間的距離,稱之為絕對值的幾何意義
應(yīng)用:
(1)如果表示-1的點(diǎn)A和表示x點(diǎn)B之間的距離是2,那么x為________;
(2)方程的解為________;
(3)小松同學(xué)在解方程時(shí),利用絕對值的幾何意義分析得到,該方程的左邊表示在數(shù)軸上x對應(yīng)點(diǎn)到1和-2對應(yīng)點(diǎn)的距離之和,而當(dāng)時(shí),取到它的最小值3,即為1和-2對應(yīng)的點(diǎn)的距離.由方程右邊的值為5可知,滿足方程的x對應(yīng)點(diǎn)在1的右邊或-2的左邊,若x的對應(yīng)點(diǎn)在1的右邊,利用數(shù)軸分析可以看出;同理,若x的對應(yīng)點(diǎn)在-2的左邊,可得;故原方程的解是或;參考小松的解答過程,求方程的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=kx+b(k、b為常數(shù))分別與x軸、y軸交于點(diǎn)A(﹣4,0)、B(0,3),拋物線y=﹣x2+2x+1與y軸交于點(diǎn)C,點(diǎn)E在拋物線y=﹣x2+2x+1的對稱軸上移動(dòng),點(diǎn)F在直線AB上移動(dòng),CE+EF的最小值是( 。
A. 1.4 B. 2.5 C. 2.8 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E在AD的延長線上,下列條件中能判斷AB∥CD的是( )
A.∠C=∠CDEB.∠ABD=∠CBDC.∠ABD=∠CDBD.∠C+∠ADC=180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A在數(shù)軸上對應(yīng)的數(shù)為x,點(diǎn)B對應(yīng)的數(shù)為y,且點(diǎn)O為數(shù)軸上的原點(diǎn),且.
(1)點(diǎn)A對應(yīng)的數(shù)為______;點(diǎn)B對應(yīng)的數(shù)為______;線段的長度為_______;
(2)若數(shù)軸上有一點(diǎn)C,且,求點(diǎn)C在數(shù)軸上對應(yīng)的數(shù);
(3)若點(diǎn)P從A點(diǎn)出發(fā)沿?cái)?shù)軸的正方向以每秒2個(gè)單位的速度運(yùn)動(dòng),同時(shí)Q點(diǎn)從B點(diǎn)出發(fā)沿?cái)?shù)軸的負(fù)方向以每秒4個(gè)單位長度的速度運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒,當(dāng)時(shí),求t的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com