【題目】如圖1,拋物線的頂點為C1,4),交x軸于A、B兩點,交y軸于點D,其中點B的坐標(biāo)為(30).

1)求拋物線的解析式;

2)如圖2,點EBD上方拋物線上的一點,連接AEDB于點F,若AF=2EF,求出點E的坐標(biāo).

3)如圖3,點M的坐標(biāo)為(,0),點P是對稱軸左側(cè)拋物線上的一點,連接MP,將MP沿MD折疊,若點P恰好落在拋物線的對稱軸CE上,請求出點P的橫坐標(biāo).

【答案】1;(2E2,3)或(1,4);(3P點橫坐標(biāo)為

【解析】

(1) 拋物線的頂點為C1,4),設(shè)拋物線的解析式為,由拋物線過點B,3,0),即可求出a的值,即可求得解析式;

2)過點E、F分別作x軸的垂線,交x軸于點M、N,設(shè)點E的坐標(biāo)為,求出A、D點的坐標(biāo),得到OM=x,則AM=x+1,由AF=2EF得到,從而推出點F的坐標(biāo),由,列出關(guān)于x的方程求解即可;

3)先根據(jù)待定系數(shù)法求出直線DM的解析式為y=-2x+3,過點PPTy軸交直線DM于點T,過點F作直線GHy軸交PT于點G,交直線CE于點H.證明△FGP≌△FHQ,得到FG=FH,PT=GH.設(shè)點Pm,-m+2m+3),則Tm-2m+3),則PT=m-4mGH=1-m,可得m-4m=1-m),解方程即可.

1)∵拋物線的頂點為C1,4),

∴設(shè)拋物線的解析式為,

∵拋物線過點B,3,0),

,

解得a=-1

∴設(shè)拋物線的解析式為,

;

2)如圖,過點EF分別作x軸的垂線,交x軸于點MN,設(shè)點E的坐標(biāo)為,

∵拋物線的解析式為,

當(dāng)y=0時,,

解得x=-1x=3,

A-1.0),

∴點D0,3),

∴過點BD的直線解析式為,點F在直線BD上,

OM=xAM=x+1,

,

,

,

解得x=1x=2,

∴點E的坐標(biāo)為(23)或(14);

3)設(shè)直線DM的解析式為y=kx+b,過點D0,3),M,0),

可得,,

解得k=-2,b=3,

∴直線DM的解析式為y=-2x+3,

tanDMO=2,

如圖,過點PPTy軸交直線DM于點T,過點F作直線GHy軸交PT于點G,交直線CE于點H.

PQMT

∴∠TFG=TPF,

TG=2GF,GF=2PG,

PT=GF,

PF=QF,

∴△FGP≌△FHQ,

FG=FH,

PT=GH.

設(shè)點Pm-m+2m+3),則Tm,-2m+3),

PT=m-4mGH=1-m,

m-4m=1-m),

解得:,或(不合題意,舍去),

∴點P的橫坐標(biāo)為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩校分別有一男一女共4名教師報名到農(nóng)村中學(xué)支教.

(1)若從甲、乙兩校報名的教師中分別隨機(jī)選1名,則所選的2名教師性別相同的概率是

(2)若從報名的4名教師中隨機(jī)選2名,用列表或畫樹狀圖的方法求出這2名教師來自同一所學(xué)校的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在,D是斜邊AB上的一個動點,沿直線CD折疊,點A落在同一平面內(nèi)的處,當(dāng)D垂直于的直角邊時,AD的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是邊長為的等邊三角形,邊在射線上,且,點從點出發(fā),沿OM的方向以1cm/s的速度運(yùn)動,當(dāng)D不與點A重合時,將繞點C逆時針方向旋轉(zhuǎn)60°得到,連接DE.

(1)如圖1,求證:是等邊三角形;

(2)如圖2,當(dāng)6<t<10時,DE是否存在最小值?若存在,求出DE的最小值;若不存在,請說明理由.

(3)當(dāng)點D在射線OM上運(yùn)動時是否存在以D,E,B為頂點的三角形是直角三角形?若存在,求出此時t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,△ABC為等邊三角形,點A的坐標(biāo)為(0,4),點Bx軸上,點C在反比例函數(shù)的圖象上,則點B的坐標(biāo)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知有理數(shù)-3,1

1)在下列數(shù)軸上,標(biāo)出表示這兩個數(shù)的點,并分別用AB表示;

2)若|m=2,在數(shù)軸上表示數(shù)m的點,介于點A,B之間,在A的右側(cè)且到點B距離為5的點表示為n

①計算m+n-mn;

②解關(guān)于x的不等式mx+4n,并把解集表示在下列數(shù)軸上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】濟(jì)寧某校為了解九年級學(xué)生藝術(shù)測試情況.以九年極(1)班學(xué)生的藝術(shù)測試成績?yōu)闃颖,?/span>、、、四個等級進(jìn)行統(tǒng)計,并將統(tǒng)計結(jié)果繪制成如下的統(tǒng)計圖,請你結(jié)合圖中所給信息解答下列問題:

(說明:級:90~100分;級:75~89分;60~74分;級:60分以下)

1)此次抽樣共調(diào)查了多少名學(xué)生?

2)請求出樣本中級的學(xué)生人數(shù),井補(bǔ)全條形統(tǒng)計圖;

3)若該校九年級有1000名學(xué)生,請你用此樣本估計藝術(shù)測試中分?jǐn)?shù)不低于75分的學(xué)生人數(shù),

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線的頂點為點,與軸的負(fù)半軸交于點,直線交拋物線W于另一點,點的坐標(biāo)為

1)求直線的解析式;

2)過點軸,交軸于點,若平分,求拋物線W的解析式;

3)若,將拋物線W向下平移個單位得到拋物線,如圖2,記拋物線的頂點為,與軸負(fù)半軸的交點為,與射線的交點為.問:在平移的過程中,是否恒為定值?若是,請求出的值;若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中(如圖),已知拋物線yax2+bx+ca≠0)的圖象經(jīng)過點B 40)、D 5,3),設(shè)它與x軸的另一個交點為A(點A在點B的左側(cè)),且△ABD的面積是3

1)求該拋物線的表達(dá)式;

2)求∠ADB的正切值;

3)若拋物線與y軸交于點C,直線CDx軸于點E,點P在射線AD上,當(dāng)△APE與△ABD相似時,求點P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案