分析 首先證明△AEO是等腰直角三角形,求出∠OAB,∠OAE即可.
解答 解:∵四邊形ABCD是矩形,
∴AC=BD,OA=OC,OB=OD,
∴OA=OB═OC,
∴∠OAD=∠ODA,∠OAB=∠OBA,
∴∠AOE=∠OAD+∠ODA=2∠OAD,
∵∠EAC=2∠CAD,
∴∠EAO=∠AOE,
∵AE⊥BD,
∴∠AEO=90°,
∴∠AOE=45°,
∴∠OAB=∠OBA=$\frac{180°-45°}{2}$=67.5°,
∴∠BAE=∠OAB-∠OAE=22.5°.
故答案為22.5°.
點評 本題考查矩形的性質(zhì)、等腰直角三角形的性質(zhì)等知識,解題的關(guān)鍵是發(fā)現(xiàn)△AEO是等腰直角三角形這個突破口,屬于中考常考題型.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 4個 | B. | 3個 | C. | 2個 | D. | 1個 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{-m}$ | B. | -$\sqrt{m}$ | C. | -$\sqrt{-m}$ | D. | 1 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 84 | B. | 336 | C. | 510 | D. | 1326 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com