【題目】解方程:
(1)(x﹣5)2=2(x﹣5)
(2)2x2+3x﹣1=0
【答案】(1)x=5或x=7;(2)x1=或x2=
【解析】
(1)此方程適合因式分解法,將方程右邊整體移項到左邊,利用提取公因式法將左邊因式分解后,令每個因式等于0即可求解;
(2)根據(jù)原方程確定系數(shù)a,b,c的值,先求出b2-4ac的值,判斷大于0,然后代入求根公式中求解.
(1)∵(x﹣5)2=2(x﹣5),
∴(x﹣5)2-2(x﹣5)=0,
∴(x﹣5)(x﹣5﹣2)=0,
∴(x﹣5)(x﹣7)=0,
∴(x﹣5)(x﹣7)=0,
∴x-5=0或x-7=0,
∴x=5或x=7.
(2)∵2x2+3x﹣1=0,
∴a=2,b=3,c=﹣1,
∴△=9+8=17>0,
∴x=,
∴x1=或x2=
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點D為⊙O上一點,點C在直徑BA的延長線上,且∠CDA=∠CBD.
(1)判斷直線CD和⊙O的位置關(guān)系,并說明理由.
(2)過點B作⊙O的切線BE交直線CD于點E,若AC=2,⊙O的半徑是3,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC和△CDE是以點C為公共頂點的兩個三角形.
(1)如圖1,當(dāng)AB=AC,CD=CE,∠BAC=∠DCE=90°時,連接BD,取BD的中點M,連接AM.探究AM、BE之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)如圖2,當(dāng)AB=AC,∠BAC=120°,∠CDE=60°,∠DCE=90°時,連接BD,取BD的中點M,連接AM.探究AM、BE之間的關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明同學(xué)利用寒假30天時間販賣草莓,了解到某品種草莓成本為10元/千克,在第天的銷售量與銷售單價如下(每天內(nèi)單價和銷售量保持一致):
銷售量(千克) | |
銷售單價(元/千克) | 當(dāng)時, |
當(dāng)時, |
設(shè)第天的利潤元.
(1)請計算第幾天該品種草莓的銷售單價為25元/千克?
(2)這30天中,該同學(xué)第幾天獲得的利潤最大?最大利潤是多少?注:利潤=(售價-成本)×銷售量
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)的圖象與函數(shù)的圖象相交于點A,并與軸交于點C,S△AOC=15.點D是線段AC上一點,CD:AC=2:3.
(1)求的值;
(2)求點D的坐標(biāo);
(3)根據(jù)圖象,直接寫出當(dāng)時不等式的的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P是菱形ABCD的對角線BD上一點,連接CP并延長,交AD于E,交BA的延長線于點F.
(1)求證:.
(2)如果,求線段PC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線l1:y=kx+b 經(jīng)過點A(﹣,0)和點B(2,5).
(1)求直線l1與y軸的交點坐標(biāo);
(2)若點C(a,a+2)與點D在直線l1上,過點D的直線l2與x軸正半軸交于點 E,當(dāng)AC=CD=CE 時,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的袋子中裝有紅、白兩種顏色的小球,這些球除顏色外都相同,其中紅球有1個,若從中隨機(jī)摸出一個球,這個球是白球的概率為.
(1)求袋子中白球的個數(shù);(請通過列式或列方程解答)
(2)隨機(jī)摸出一個球后,放回并攪勻,再隨機(jī)摸出一個球,求兩次都摸到相同顏色的小球的概率.(請結(jié)合樹狀圖或列表解答)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com