如圖,△ABC中,AB=BC=AC=12cm,現(xiàn)有兩點M、N分別從點A、點B同時出發(fā),沿三角形的邊運動,已知點M的速度為1cm/s,點N的速度為2cm/s.當(dāng)點N第一次到達B點時,M、N同時停止運動.
(1)點M、N運動幾秒后,M、N兩點重合?
(2)點M、N運動幾秒后,可得到等邊三角形△AMN?
(3)當(dāng)點M、N在BC邊上運動時,能否得到以MN為底邊的等腰三角形?如存在,請求出此時M、N運動的時間.
解:(1)設(shè)點M、N運動x秒后,M、N兩點重合,
x×1+12=2x,解得:x=12;
(2)設(shè)點M、N運動t秒后,可得到等邊三角形△AMN,如圖①,
AM=t×1=t,AN=AB-BN=12-2t,∵三角形△AMN是等邊三角形,∴t=12-2t,
解得t=4,∴點M、N運動4秒后,可得到等邊三角形△AMN.
(3)當(dāng)點M、N在BC邊上運動時,可以得到以MN為底邊的等腰三角形,
由(1)知12秒時M、N兩點重合,恰好在C處,
如圖②,假設(shè)△AMN是等腰三角形,∴AN=AM,∴∠AMN=∠ANM,
∴∠AMC=∠ANB,∵AB=BC=AC,∴△ACB是等邊三角形,∴∠C=∠B,
在△ACM和△ABN中,
∵,∴△ACM≌△ABN,∴CM=BN,
設(shè)當(dāng)點M、N在BC邊上運動時,M、N運動的時間y秒時,△AMN是等腰三角形,
∴CM=y-12,NB=36-2y,CM=NB,y-12=36-2y,解得:y=16.故假設(shè)成立.
∴當(dāng)點M、N在BC邊上運動時,能得到以MN為底邊的等腰三角形,此時M、N運動的時間為16秒.
科目:初中數(shù)學(xué) 來源: 題型:
如圖所示,PA、PB是⊙O的切線,A、B為切點,∠APB=40°,點C是⊙O上不同于A、B的任意一點,則∠ACB的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
某公司有A型產(chǎn)品40件,B型產(chǎn)品60件,分配給下屬甲、乙兩個商店銷售,其中70件給甲店,30件給乙店,且都能賣完.兩商店銷售這兩種產(chǎn)品每件的利潤(元)如下表:
A型利潤 | B型利潤 | |
甲店 | 200 | 170 |
乙店 | 160 | 150 |
(1)設(shè)分配給甲店A型產(chǎn)品x件,這家公司賣出這100件產(chǎn)品的總利潤為W(元),求W關(guān)于x的函數(shù)關(guān)系式,并求出x的取值范圍;
(2)若要求總利潤不低于17560元,有多少種不同分配方案,并將各種方案設(shè)計出來;
(3)為了促銷,公司決定僅對甲店A型產(chǎn)品讓利銷售,每件讓利a元,但讓利后A型產(chǎn)品的每件利潤仍高于甲店B型產(chǎn)品的每件利潤.甲店的B型產(chǎn)品以及乙店的A,B型產(chǎn)品的每件利潤不變,問該公司又如何設(shè)計分配方案,使總利潤達到最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在△ABC中,BC邊的垂直平分線交BC于D,交AB于E,若CE平分∠ACB,∠B=40°, 則∠A= __________度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知:A(0,1),B(2,0),C(4,3)
(1)在坐標系中描出各點,畫出△ABC.
(2)求△ABC的面積;
(3)設(shè)點P在坐標軸上,且△ABP與△ABC的面積相等,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
(2015•漳州)國慶期間,為了滿足百姓的消費需求,某商店計劃用170000元購進一批家電,這批家電的進價和售價如表:
類別 | 彩電 | 冰箱 | 洗衣機 |
進價(元/臺) | 2000 | 1600 | 1000 |
售價(元/臺) | 2300 | 1800 | 1100 |
若在現(xiàn)有資金允許的范圍內(nèi),購買表中三類家電共100臺,其中彩電臺數(shù)是冰箱臺數(shù)的2倍,設(shè)該商店購買冰箱x臺.
(1)商店至多可以購買冰箱多少臺?
(2)購買冰箱多少臺時,能使商店銷售完這批家電后獲得的利潤最大?最大利潤為多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com