【題目】填空完成推理過程:
如圖,∠1=∠2,∠A=∠D, 求證:∠B=∠C.
證明:∵∠1=∠2(已知),
∠1=∠3( ),
∴∠2=∠3(等量代換).
∴AF∥________( ).
∴∠D=∠4(兩直線平行,同位角相等 ).
∵∠A=∠D(已知),
∴∠A=∠4(等量代換).
∴AB∥CD(內(nèi)錯(cuò)角相等,兩直線平行).
∴∠B=∠C( ).
【答案】對(duì)頂角相等;DE;同位角相等,兩直線平行;兩直線平行,內(nèi)錯(cuò)角相等.
【解析】
先根據(jù)已知條件,判定AF∥DE,進(jìn)而得出∠A=∠4,再判定AB∥CD,最后根據(jù)平行線的性質(zhì),即可得出∠B=∠C.
證明:∵∠1=∠2(已知),
∠1=∠3 (對(duì)頂角相等)
∴∠2=∠3(等量代換)
∴AF∥DE(同位角相等,兩直線平行)
∴∠D=∠4(兩直線平行,同位角相等)
∵∠A=∠D(已知),
∴∠A=∠4(等量代換)
∴AB∥CD(內(nèi)錯(cuò)角相等,兩直線平行)
∴∠B=∠C(兩直線平行,內(nèi)錯(cuò)角相等)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象經(jīng)過點(diǎn)A(﹣2,6),且與x軸相交于點(diǎn)B,與正比例函數(shù)y=3x的圖象相交于點(diǎn)C,點(diǎn)C的橫坐標(biāo)為1.
(1)求k、b的值;
(2)若點(diǎn)D在y軸負(fù)半軸上,且滿足S△COD=S△BOC,求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知Rt△ABC的直角邊AC與Rt△DEF的直角邊DF在同一條直線上,且AC=60cm,BC=45cm,DF=6cm,EF=8cm.現(xiàn)將點(diǎn)C與點(diǎn)F重合,再以4cm/s的速度沿
CA方向移動(dòng)△DEF;同時(shí),點(diǎn)P從點(diǎn)A出發(fā),以5cm/s的速度沿AB方向移動(dòng).設(shè)移動(dòng)時(shí)間為t(s),以點(diǎn)P為圓心,3t(cm)長(zhǎng)為半徑的⊙P與直線AB相交于點(diǎn)M,N,當(dāng)點(diǎn)F與點(diǎn)A重合時(shí),△DEF與點(diǎn)P同時(shí)停止移動(dòng),在移動(dòng)過程中:
(1)連接ME,當(dāng)ME∥AC時(shí),t=________s;
(2)連接NF,當(dāng)NF平分DE時(shí),求t的值;
(3)是否存在⊙P與Rt△DEF的兩條直角邊所在的直線同時(shí)相切的時(shí)刻?若存在,求出t的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)生的學(xué)業(yè)負(fù)擔(dān)過重會(huì)嚴(yán)重影響學(xué)生對(duì)待學(xué)習(xí)的態(tài)度.為此我市教育部門對(duì)部分學(xué)校的八年級(jí)學(xué)生對(duì)待學(xué)習(xí)的態(tài)度進(jìn)行了一次抽樣調(diào)查(把學(xué)習(xí)態(tài)度分為三個(gè)層級(jí),A級(jí):對(duì)學(xué)習(xí)很感興趣;B級(jí):對(duì)學(xué)習(xí)較感興趣;C級(jí):對(duì)學(xué)習(xí)不感興趣),并將調(diào)查結(jié)果繪制成圖①和圖②的統(tǒng)計(jì)圖(不完整).請(qǐng)根據(jù)圖中提供的信息,解答下列問題:
(1)此次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;
(2)將圖①補(bǔ)充完整;
(3)求出圖②中C級(jí)所占的圓心角的度數(shù);
(4)根據(jù)抽樣調(diào)查結(jié)果,請(qǐng)你估計(jì)我市近8000名八年級(jí)學(xué)生中大約有多少名學(xué)生學(xué)習(xí)態(tài)度達(dá)標(biāo)(達(dá)標(biāo)包括A級(jí)和B級(jí))?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圖①是一個(gè)四邊形紙條 ABCD,其中 AB∥CD,E,F 分別為邊 AB,CD 上的兩個(gè)點(diǎn),將紙條 ABCD 沿 EF 折疊得到圖②,再將圖②沿 DF 折疊得到圖③,若在圖③中,∠FEM=26°,則∠EFC 的度數(shù)為( )
A.52°B.64°C.102°D.128°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,AC=BC,∠ACB=90°,點(diǎn)D為邊AB上一點(diǎn),CD繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°至DE,CE交AB于點(diǎn)G.已知AD=8,BG=6,點(diǎn)F是AE的中點(diǎn),連接DF,求線段DF的長(zhǎng)___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊三角形ABC中,AD⊥BC于點(diǎn)D,以AD為一邊向右作等邊三角形ADE,DE與AC交于點(diǎn)F.
(1)試判斷DF與EF的數(shù)量關(guān)系,并給出證明;
(2)若CF的長(zhǎng)為2 cm,試求等邊三角形ABC的邊長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=x2-(m+1)x+m,
(1)求證:拋物線與x軸一定有交點(diǎn);
(2)若拋物線與x軸交于A(x1,0),B(x2,0)兩點(diǎn),x1﹤0﹤x2,且,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)上學(xué)期的數(shù)學(xué)歷次測(cè)驗(yàn)成績(jī)?nèi)缦卤硭荆?/span>
測(cè)驗(yàn)類別 | 平時(shí)測(cè)驗(yàn) | 期中測(cè)驗(yàn) | 期末測(cè)驗(yàn) | ||
第1次 | 第2次 | 第3次 | |||
成績(jī) | 100 | 106 | 106 | 105 | 110 |
(1)該同學(xué)上學(xué)期5次測(cè)驗(yàn)成績(jī)的眾數(shù)為 ,中位數(shù)為 ;
(2)該同學(xué)上學(xué)期數(shù)學(xué)平時(shí)成績(jī)的平均數(shù)為 ;
(3)該同學(xué)上學(xué)期的總成績(jī)是將平時(shí)測(cè)驗(yàn)的平均成績(jī)、期中測(cè)驗(yàn)成績(jī)、期末測(cè)驗(yàn)成績(jī)按照2:3:5的比例計(jì)算所得,求該同學(xué)上學(xué)期數(shù)學(xué)學(xué)科的總評(píng)成績(jī)(結(jié)果保留整數(shù))。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com