【題目】一批單價為20元的商品,若每件按30元的價格銷售時,每天能賣出60件;若每件按50元的價格銷售時,每天能賣出20件,假定每天銷售件數(shù)y(件)與銷售價格x(元/件)滿足y=kx+b.
(1)求y與x滿足的函數(shù)關(guān)系式(不要求寫出x的取值范圍);
(2)在不考慮其他因素的情況下,每件商品銷售價格定為多少元時才能使每天獲得的利潤最大?最大利潤是多少?

【答案】
(1)解:根據(jù)題意,得
, 解得
因此y與x的函數(shù)關(guān)系式為
(2)解:設(shè)每件商品銷售價格定為x元時,每天獲得的利潤為w元,根據(jù)題意,得:




答:當(dāng)銷售單價定為40元時,每天獲得的利潤最大,最大利潤是800元
【解析】待定系數(shù)法求解可得;
根據(jù)“總利潤=每件利潤×銷售量”列出函數(shù)解析式,再配方成頂點式可得答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】超市為減小商品的積壓,決定采取降價銷售的策略,若某商品的原價為元,隨著不同幅度的降價,日銷量(單位為件)發(fā)生相應(yīng)的變化如表:

降價()

日銷量()

這個表反映了________ ________ 兩個變量之間的關(guān)系;

從表中可以看出每降價元,日銷量增加_ 件;

可以估計降價之前的日銷量為_ _件;

設(shè)日銷量為件,降價為元,由上表呈現(xiàn)的規(guī)律,猜想的函數(shù)關(guān)系式為_

當(dāng)售價為元時,日銷量為 ________件.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形ABCD中,AD//BC,∠B=70°,∠C=40°,DE//AB交BC于點E.若AD=3cm,BC=10cm,則CD的長是 cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一坐標(biāo)系中,一次函數(shù)y=ax+b與二次函數(shù)y=bx2+a的圖象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某區(qū)九年級學(xué)生課外體育活動的情況,從該年級學(xué)生中隨機(jī)抽取了4%的學(xué)生,對其參加的體育活動項目進(jìn)行了調(diào)查,將調(diào)查的數(shù)據(jù)進(jìn)行統(tǒng)計并繪制成如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖.有下列結(jié)論:①被抽測學(xué)生中參加羽毛球項目的人數(shù)為30;②在本次調(diào)查中“其他”的扇形的圓心角的度數(shù)為36°;③估計全區(qū)九年級參加籃球項目的學(xué)生比參加足球項目的學(xué)生多20%;④全區(qū)九年級大約有1500名學(xué)生參加乒乓球項目.其中正確結(jié)論的個數(shù)是( 。

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)學(xué)雷鋒、樹新風(fēng)、做文明中學(xué)生號召,某校開展了志愿者服務(wù)活動,活動項目有戒毒宣傳”、“文明交通崗”、“關(guān)愛老人”、“義務(wù)植樹”、“社區(qū)服務(wù)等五項,活動期間,隨機(jī)抽取了部分學(xué)生對志愿者服務(wù)情況進(jìn)行調(diào)查,結(jié)果發(fā)現(xiàn),被調(diào)查的每名學(xué)生都參與了活動,最少的參與了1項,最多的參與了5項,根據(jù)調(diào)查結(jié)果繪制了如圖所示不完整的折線統(tǒng)計圖和扇形統(tǒng)計圖.

(1)被隨機(jī)抽取的學(xué)生共有多少名?

(2)在扇形統(tǒng)計圖中,求活動數(shù)為3項的學(xué)生所對應(yīng)的扇形圓心角的度數(shù),并補(bǔ)全折線統(tǒng)計圖;

(3)該校共有學(xué)生2000人,估計其中參與了4項或5項活動的學(xué)生共有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠B60°,DE分別為AB、BC上的點,且AECD交于點F

1)如圖1,若AECD為△ABC的角平分線:

求∠AFD的度數(shù);

AD3,CE2,求AC的長;

2)如圖2,若∠EAC=∠DCA30°,求證:ADCE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中 過點A作AE⊥DC,垂足為E,連接BE,F(xiàn)為BE上一點,且∠AFE=∠D.

(1)求證:△ABF∽△BEC;
(2)若AD=5,AB=8,sinD= ,求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊上,為邊上一動點,連接關(guān)于所在直線對稱,點分別為的中點,連接并延長交所在直線于點,連接.當(dāng)為直角三角形時,的長為_________

查看答案和解析>>

同步練習(xí)冊答案