如圖1,已知拋物線的方程C1: (m>0)與x軸交于點BC,與y軸交于點E,且點B在點C的左側(cè).

(1)若拋物線C1過點M(2, 2),求實數(shù)m的值;

(2)在(1)的條件下,求△BCE的面積;

(3)在(1)的條件下,在拋物線的對稱軸上找一點H,使得BHEH最小,求出點H的坐標(biāo);

(4)在第四象限內(nèi),拋物線C1上是否存在點F,使得以點BC、F為頂點的三角形與△BCE相似?若存在,求m的值;若不存在,請說明理由.

 答

(1)將M(2, 2)代入,得.解得m=4.

(2)當(dāng)m=4時,.所以C(4, 0),E(0, 2).

所以SBCE

(3)如圖2,拋物線的對稱軸是直線x=1,當(dāng)H落在線段EC上時,BHEH最小.

設(shè)對稱軸與x軸的交點為P,那么

因此.解得.所以點H的坐標(biāo)為

(4)①如圖3,過點BEC的平行線交拋物線于F,過點FFF′⊥x軸于F′.

由于∠BCE=∠FBC,所以當(dāng),即時,△BCE∽△FBC

設(shè)點F的坐標(biāo)為,由,得

解得xm+2.所以F′(m+2, 0).

,得.所以

,得

整理,得0=16.此方程無解.

圖2                  圖3                   圖4

②如圖4,作∠CBF=45°交拋物線于F,過點FFF′⊥x軸于F′,

由于∠EBC=∠CBF,所以,即時,△BCE∽△BFC

在Rt△BFF′中,由FF′=BF′,得

解得x=2m.所以F.所以BF′=2m+2,

,得.解得

綜合①、②,符合題意的m

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,已知拋物線的頂點為A(2,1),且經(jīng)過原點O,與x軸的另一個交點為B.
(1)求拋物線的解析式;
(2)若點C在拋物線的對稱軸上,點D在拋物線上,且以O(shè)、C、D、B四點為頂點的四邊形為平行四邊形,求D點的坐標(biāo);
(3)連接OA、AB,如圖2,在x軸下方的拋物線上是否存在點P,使得△OBP與△OAB相似?若存在,求出P點的坐標(biāo);若不存在,說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,已知拋物線的頂點為A(0,1),矩形CDEF的頂點C、F在拋物線上,點D、E在x軸上,CF交y軸于點B(0,2),且其面積為8:
(1)此拋物線的解析式;
(2)如圖2,若點P為所求拋物線上的一動點,試判斷以點P為圓心,PB為半徑的圓與x軸的位置關(guān)系,并說明理由.
(3)如圖2,設(shè)點P在拋物線上且與點A不重合,直線PB與拋物線的另一個交點為Q,過點P、Q分別作x軸的垂線,垂足分別為N、M,連接PO、QO.求證:△QMO∽△PNO.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,已知拋物線的頂點為A(O,1),矩形CDEF的頂點C、F在拋物線上,D、E在x軸上,CF交y軸于點B(0,2),且其面積為8.
(1)求此拋物線的解析式;
(2)如圖2,若P點為拋物線上不同于A的一點,連接PB并延長交拋物線于點Q,過點P、Q分別作x軸的垂線,垂足分別為S、R.
①求證:PB=PS;
②判斷△SBR的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2009•黔南州)如圖1,已知拋物線的頂點為A(0,1),矩形CDEF的頂點C、F在拋物線上,D、E在x軸上,CF交y軸于點B,且其面積為8,F(xiàn)點的坐標(biāo)為(2,2).
(1)求此拋物線的解析式;
(2)如圖2,若P點為拋物線上不同于A的一點,連結(jié)PB并延長交拋物線于點Q,過點P、Q分別作x軸的垂線,垂足分別為S、R.
①求證:PB=PS;
②試探索在線段SR上是否存在點M,使得以點P、S、M為頂點的三角形和以點Q、R、M為頂點的三角形相似?若存在,請找出M點的位置;若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,已知拋物線的頂點為A(2,1),且經(jīng)過原點O,與x軸的另一個交點為B.

(1)求拋物線的解析式;
(2)連接OA,AB,如圖2,在x軸下方的拋物線上是否存在點P,使得△OBP與△OAB相似?若存在,求出P點的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案