【題目】在 中 ,平分交 于 ,的兩邊分別與, 相交于,兩點(diǎn),且.
(1)如圖,若, ,, ,.
①寫出 °,的長(zhǎng)是 .
②求四邊形的周長(zhǎng).
(2)如圖,過作于,作于,先補(bǔ)全圖乙再證明.
【答案】(1)①90°,18,②30;(2)作圖見解析,證明見解析
【解析】
(1)①由直角三角形兩銳角互余可得,結(jié)合直角三角形30度角的性質(zhì)可得AB長(zhǎng),由平行的性質(zhì)及角平分線的性質(zhì)可得,易得的度數(shù);②在①的基礎(chǔ)上,結(jié)合等角對(duì)等邊的性質(zhì)可得,
設(shè),根據(jù)直角三角形30度角的性質(zhì)可得,則,
可得AM、MD、DN、AN的長(zhǎng),易得四邊形的周長(zhǎng);
(3)利用HL定理可證 ≌,,結(jié)合全等三角形對(duì)應(yīng)邊相等的性質(zhì)易證.
解:①解:∵,
∴
∵
∴,
又
∴
∴
又∵平分
∴
∴,
所以90°,的長(zhǎng)是18.
②解:∵,
∴
∵
∴,
又
∴
∴
又∵平分
∴
∴
∴
在中,設(shè),則
∴中,
∴
∴
∴
∴,
所以四邊形的周長(zhǎng)=
(2)補(bǔ)全圖如圖所示
證明:由作圖知,,
由已知,平分,
∴ ≌
又
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC =3,BC =4,AB=5,BD平分∠ABC,如果M、N分別為BD、BC上的動(dòng)點(diǎn),那么CM+MN的最小值是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在中,,,,垂足為點(diǎn),且,連接.
(1)如圖①,求證:是等邊三角形;
(2)如圖①,若點(diǎn)、分別為,上的點(diǎn),且,求證:;
(3)利用(1)(2)中的結(jié)論,思考并解答:如圖②,為上一點(diǎn),連結(jié),當(dāng)時(shí),線段,,之間有何數(shù)量關(guān)系,給出證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=2,點(diǎn)E在邊AD上,∠ABE=45°,BE=DE,連接BD,點(diǎn)P在線段DE上,過點(diǎn)P作PQ∥BD交BE于點(diǎn)Q,連接QD.設(shè)PD=x,△PQD的面積為y,則能表示y與x函數(shù)關(guān)系的圖象大致是( 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)生小明將線段的垂直平分線上的點(diǎn),稱作線段的“軸點(diǎn)”.其中,當(dāng)時(shí),稱為線段的“長(zhǎng)軸點(diǎn)”;當(dāng)時(shí),稱為線段的“短軸點(diǎn)”.
(1)如圖1,點(diǎn),的坐標(biāo)分別為,,則在,,,中線段的“短軸點(diǎn)”是______.
(2)如圖2,點(diǎn)的坐標(biāo)為,點(diǎn)在軸正半軸上,且.
①若為線段的“長(zhǎng)軸點(diǎn)”,則點(diǎn)的橫坐標(biāo)的取值范圍是( )
A. B. C. D.或
②點(diǎn)為軸上的動(dòng)點(diǎn),點(diǎn),在線段的垂直平分線的同側(cè).若為線段的“軸點(diǎn)”,當(dāng)線段與的和最小時(shí),求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線過正方形的頂點(diǎn),點(diǎn)、到直線的距離分別為、,則正方形的周長(zhǎng)為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y=x2﹣2x+1的頂點(diǎn)為P,與y軸的交點(diǎn)為Q,點(diǎn)F(1,).
(1)求tan∠OPQ的值;
(2)將拋物線C向上平移得到拋物線C′,點(diǎn)Q平移后的對(duì)應(yīng)點(diǎn)為Q′,且FQ′=OQ′.
①求拋物線C′的解析式;
②若點(diǎn)P關(guān)于直線Q′F的對(duì)稱點(diǎn)為K,射線FK與拋物線C′相交于點(diǎn)A,求點(diǎn)A的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△ADE分別是以BC,DE為底邊且頂角相等的等腰三角形,點(diǎn)D在線段BC上,AF平分DE交BC于點(diǎn)F,連接BE,EF.
(1)CD與BE相等?若相等,請(qǐng)證明;若不相等,請(qǐng)說明理由;
(2)若∠BAC=90°,求證:BF2+CD2=FD2.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com