【題目】如圖所示的正方形網(wǎng)格中,每個小正方形的邊長均為1個單位,均在格點上,按如下要求作圖.
(1)將線段繞點按順時針方向旋轉90°,點對應點為點;
(2)以為對角線畫一個各邊都不相等的四邊形,且,此時四邊形的面積為_______.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC的邊AB,AC的外側分別作等邊△ABD和等邊△ACE,連接DC,BE.
(1)求證:DC=BE;
(2)若BD=3,BC=4, BD⊥BC于點B,請求出△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】陜西省相關文件規(guī)定,西安市實行居民階梯水價制度,對居民用水的基本水價實行三級價差,各階梯水價均為用戶終端水價,具體如下:
第一階梯:年用水量及以下,終端水價為元/.
第二階梯:年用水量(含),終端水價為元/.
第三階梯:年用水量以上,終端水價為元/.
城區(qū)居民階梯水價計量結算周期以年為單位,年用水量累計達到各階梯水量上限后,超出部分執(zhí)行下一階梯水價;年度周期之間水量不結轉,不累計.
設某戶居民2019年的年用水量為,應繳水費為(元).
(1)寫出該戶居民2019年的年用水量為含)的與之間的函數(shù)表達式.
(2)若該戶居民2019年的應繳水費為元,則該戶居民2019年的年用水量為多少.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC是⊙O的內(nèi)接三角形,∠BAC的平分線交⊙O于點D.
(I)如圖①,若BC是⊙O的直徑,BC=4,求BD的長;
(Ⅱ)如圖②,若∠ABC的平分線交AD于點E,求證:DE=DB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】北中環(huán)橋是省城太原的一座跨汾河大橋(如圖1),它由五個高度不同,跨徑也不同的拋物線型鋼拱通過吊橋,拉鎖與主梁相連,最高的鋼拱如圖2所示,此鋼拱(近似看成二次函數(shù)的圖象-拋物線)在同一豎直平面內(nèi),與拱腳所在的水平面相交于A,B兩點,拱高為78米(即最高點O到AB的距離為78米),跨徑為90米(即AB=90米),以最高點O為坐標原點,以平行于AB的直線為軸建立平面直角坐標系,則此拋物線鋼拱的函數(shù)表達式為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明研究了這樣一道幾何題:如圖1,在中,把繞點順時針旋轉得到,把繞點逆時針旋轉得到,連接.當時,請問邊上的中線與的數(shù)量關系是什么?以下是他的研究過程:
特例驗證:(1)①如圖2,當為等邊三角形時,猜想與的數(shù)量關系為_______;②如圖3,當,時,則長為________.
猜想論證:(2)在圖1中,當為任意三角形時,猜想與的數(shù)量關系,并給予證明.
拓展應用:(3)如圖4,在四邊形,,,,,,在四邊形內(nèi)部是否存在點,使與之間滿足小明探究的問題中的邊角關系?若存在,請畫出點的位置(保留作圖痕跡,不需要說明)并直接寫出的邊上的中線的長度;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y1=3x﹣5與反比例函數(shù)y2=的圖象相交A(2,m),B(n,﹣6)兩點,連接OA,OB.
(1)求k和n的值;
(2)求△AOB的面積;
(3)直接寫出y1> y2時自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD中,點P是CD的中點,∠BCD=60°,射線AP交BC的延長線于點E,射線BP交DE于點K,點O是線段BK的中點,作BM⊥AE于點M,作KN⊥AE于點N,連結MO、NO,以下四個結論:①△OMN是等腰三角形;②tan∠OMN=;③BP=4PK;④PMPA=3PD2,其中正確的是( 。
A.①②③B.①②④C.①③④D.②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com