【題目】如圖,菱形ABCD中,點P是CD的中點,∠BCD=60°,射線AP交BC的延長線于點E,射線BP交DE于點K,點O是線段BK的中點,作BM⊥AE于點M,作KN⊥AE于點N,連結MO、NO,以下四個結論:①△OMN是等腰三角形;②tan∠OMN=;③BP=4PK;④PMPA=3PD2,其中正確的是( 。
A.①②③B.①②④C.①③④D.②③④
【答案】B
【解析】
根據(jù)菱形的性質(zhì)得到AD∥BC,根據(jù)平行線的性質(zhì)得到對應角相等,根據(jù)全等三角形的判定定理△ADP≌△ECP,由相似三角形的性質(zhì)得到AD=CE,作PI∥CE交DE于I,根據(jù)點P是CD的中點證明CE=2PI,BE=4PI,根據(jù)相似三角形的性質(zhì)得到,得到BP=3PK,故③錯誤;作OG⊥AE于G,根據(jù)平行線等分線段定理得到MG=NG,又OG⊥MN,證明△MON是等腰三角形,故①正確;根據(jù)直角三角形的性質(zhì)和銳角三角函數(shù)求出∠OMN=,故②正確;然后根據(jù)射影定理和三角函數(shù)即可得到PMPA=3PD2,故④正確.
解:作PI∥CE交DE于I,
∵四邊形ABCD為菱形,
∴AD∥BC,
∴∠DAP=∠CEP,∠ADP=∠ECP,
在△ADP和△ECP中,
,
∴△ADP≌△ECP,
∴AD=CE,
則,又點P是CD的中點,
∴,
∵AD=CE,
∴,
∴BP=3PK,
故③錯誤;
作OG⊥AE于G,
∵BM丄AE于M,KN丄AE于N,
∴BM∥OG∥KN,
∵點O是線段BK的中點,
∴MG=NG,又OG⊥MN,
∴OM=ON,
即△MON是等腰三角形,故①正確;
由題意得,△BPC,△AMB,△ABP為直角三角形,
設BC=2,則CP=1,由勾股定理得,BP=,
則AP=,
根據(jù)三角形面積公式,BM=,
∵點O是線段BK的中點,
∴PB=3PO,
∴OG=BM=,
MG=MP=,
tan∠OMN=,故②正確;
∵∠ABP=90°,BM⊥AP,
∴PB2=PMPA,
∵∠BCD=60°,
∴∠ABC=120°,
∴∠PBC=30°,
∴∠BPC=90°,
∴PB=PC,
∵PD=PC,
∴PB2=3PD,
∴PMPA=3PD2,故④正確.
故選B.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示的正方形網(wǎng)格中,每個小正方形的邊長均為1個單位,均在格點上,按如下要求作圖.
(1)將線段繞點按順時針方向旋轉(zhuǎn)90°,點對應點為點;
(2)以為對角線畫一個各邊都不相等的四邊形,且,此時四邊形的面積為_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在菱形ABCD中,點P、Q分別在BC、CD上,∠PAQ=∠B.
(1)如圖1,若AP⊥BC,求證:AP=AQ;
(2)如圖2,若點P為BC上一點,AP=AQ仍成立嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某水果店11月份購進甲、乙兩種水果共花費1700元,其中甲種水果8元/千克,乙種水果18元/千克.12月份,這兩種水果的進價上調(diào)為:甲種水果10元/千克,乙種水果20元/千克.
(1)若該店12月份購進這兩種水果的數(shù)量與11月份都相同,將多支付貨款300元,求該店11月份購進甲、乙兩種水果分別是多少千克?
(2)若12月份將這兩種水果進貨總量減少到120千克,設購進甲種水果a千克,需要支付的貨款為w元,求w與a的函數(shù)關系式;
(3)在(2)的條件下,若甲種水果不超過90千克,則12月份該店需要支付這兩種水果的貨款最少應是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】北京第一條地鐵線路于1971年1月15日正式開通運營.截至2017年1月,北京地鐵共“金山銀山,不如綠水青山”.某市不斷推進“森林城市”建設,今春種植四類樹苗,園林部門從種植的這批樹苗中隨機抽取了4000棵,將各類樹苗的種植棵數(shù)繪制成扇形統(tǒng)計圖,將各類樹苗的成活棵數(shù)繪制成條形統(tǒng)計圖,經(jīng)統(tǒng)計松樹和楊樹的成活率較高,且楊樹的成活率為97%,根據(jù)圖表中的信息解答下列問題:
(1)扇形統(tǒng)計圖中松樹所對的圓心角為 度,并補全條形統(tǒng)計圖.
(2)該市今年共種樹16萬棵,成活了約多少棵?
(3)園林部門決定明年從這四類樹苗中選兩類種植,請用列表法或樹狀圖求恰好選到成活率較高的兩類樹苗的概率.(松樹、楊樹、榆樹、柳樹分別用A,B,C,D表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,在平行四邊形ABCD中,M是BC邊的中點,E是邊BA延長線上的一點,連結EM,分別交線段AD、AC于點F、G.
(1)求證:;
(2)當BC2=2BABE時,求證:∠EMB=∠ACD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD為菱形,以AD為直徑作⊙O交AB于點F,連接DB交⊙O于點H,E是BC上的一點,且BE=BF,連接DE.
(1)求證:△DAF≌△DCE.
(2)求證:DE是⊙O的切線.
(3)若BF=2,DH=,求四邊形ABCD的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com