【題目】陜西省相關(guān)文件規(guī)定,西安市實(shí)行居民階梯水價(jià)制度,對(duì)居民用水的基本水價(jià)實(shí)行三級(jí)價(jià)差,各階梯水價(jià)均為用戶終端水價(jià),具體如下:
第一階梯:年用水量及以下,終端水價(jià)為元/.
第二階梯:年用水量(含),終端水價(jià)為元/.
第三階梯:年用水量以上,終端水價(jià)為元/.
城區(qū)居民階梯水價(jià)計(jì)量結(jié)算周期以年為單位,年用水量累計(jì)達(dá)到各階梯水量上限后,超出部分執(zhí)行下一階梯水價(jià);年度周期之間水量不結(jié)轉(zhuǎn),不累計(jì).
設(shè)某戶居民2019年的年用水量為,應(yīng)繳水費(fèi)為(元).
(1)寫(xiě)出該戶居民2019年的年用水量為含)的與之間的函數(shù)表達(dá)式.
(2)若該戶居民2019年的應(yīng)繳水費(fèi)為元,則該戶居民2019年的年用水量為多少.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為的直徑,為上一點(diǎn),連接,過(guò)作于點(diǎn),過(guò)點(diǎn)作,其中交的延長(zhǎng)線于點(diǎn).
(1)求證:是的切線.
(2)如圖,點(diǎn)在上,且滿足,連接并延長(zhǎng)交的延長(zhǎng)線于點(diǎn).
①試探究線段與之間滿足的數(shù)量關(guān)系.
②若,,求線段的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,若要在寬AD為20米的城南大道兩邊安裝路燈,路燈的燈臂BC長(zhǎng)2米,且與燈柱AB成120°角,路燈采用圓錐形燈罩,燈罩的軸線CO與燈臂BC垂直,當(dāng)燈罩的軸線CO通過(guò)公路路面的中心線時(shí)照明效果最好,此時(shí),路燈的燈柱AB高應(yīng)該設(shè)計(jì)為多少米(結(jié)果保留根號(hào))?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線的對(duì)稱軸為直線,與軸的一個(gè)交點(diǎn)在和之間,其部分圖象如圖所示.則下列結(jié)論:①;②;③;④(為實(shí)數(shù));⑤點(diǎn),,是該拋物線上的點(diǎn),則,其中,正確結(jié)論的個(gè)數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,為的平分線,點(diǎn)在上,經(jīng)過(guò)點(diǎn),兩點(diǎn),與,分別交于點(diǎn),.
(1)求證:與相切;
(2)若,,求的半徑和的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=ax2+x+c經(jīng)過(guò)A(4,0),B(1,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求該拋物線的解析式;
(2)在直線AC上方的拋物線上是否存在一點(diǎn)D,使得△DCA的面積最大?若存在,求出點(diǎn)D的坐標(biāo)及△DCA面積的最大值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均為1個(gè)單位,均在格點(diǎn)上,按如下要求作圖.
(1)將線段繞點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)90°,點(diǎn)對(duì)應(yīng)點(diǎn)為點(diǎn);
(2)以為對(duì)角線畫(huà)一個(gè)各邊都不相等的四邊形,且,此時(shí)四邊形的面積為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,AB=CD,對(duì)角線AC,BD相交于點(diǎn)O,AE⊥BD于點(diǎn)E,CF⊥BD于點(diǎn)F,連接AF,CE,若DE=BF,則下列結(jié)論:
①CF=AE;②OE=OF;③圖中共有四對(duì)全等三角形;④四邊形ABCD是平行四邊形;其中正確結(jié)論的是_____________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在菱形ABCD中,點(diǎn)P、Q分別在BC、CD上,∠PAQ=∠B.
(1)如圖1,若AP⊥BC,求證:AP=AQ;
(2)如圖2,若點(diǎn)P為BC上一點(diǎn),AP=AQ仍成立嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com