【題目】如圖,在直角坐標系中,點,點,過點的直線垂直于線段,點是直線上在第一象限內的一動點,過點軸,垂足為,把沿翻折,使點落在點處,若以,,為頂點的三角形與△ABP相似,則滿足此條件的點的坐標為__________

【答案】

【解析】

求出直線l的解析式,證出AOB∽△PCA,得出,設AC=mm0),則PC=2m,根據(jù)PCA≌△PDA,得出 ,當PAD∽△PBA時,根據(jù),,得出m=2,從而求出P點的坐標為(4,4)、(0-4),若PAD∽△BPA,得出,求出,從而得出,求出,即可得出P點的坐標為

∵點A2,0),點B0,1),

∴直線AB的解析式為y=-x+1

∵直線l過點A40),且lAB,

∴直線l的解析式為;y=2x-4,∠BAO+PAC=90°

PCx軸,

∴∠PAC+APC=90°,

∴∠BAO=APC,

∵∠AOB=ACP

∴△AOB∽△PCA,

,

,

AC=mm0),則PC=2m,

∵△PCA≌△PDA

AC=AD,PC=PD,

,

如圖1:當PAD∽△PBA時,

,

,

AB=,

AP=2

,

m=±2,(負失去)

m=2

m=2時,PC=4,OC=4,P點的坐標為(44),

如圖2,若PAD∽△BPA,

,

,

m=±,(負舍去)

m=

m=時,PC=1OC=,

P點的坐標為(1),

故答案為:P44),P1).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為“節(jié)能減排,保護環(huán)境”,某村計劃建造A、B兩種型號的沼氣池共20個,以解決所有農戶的燃料問題.據(jù)市場調查:建造A、B兩種型號的沼氣池各1個,共需費用5萬元;建造A型號的沼氣池3個,B種型號的沼氣池4個,共需費用18萬元.

1)求建造A、B兩種型號的沼氣池造價分別是多少?

2)設建造A型沼氣池x個,總費用為y萬元,求yx之間的函數(shù)關系式;若要使投入總費用不超過52萬元,至少要建造A型沼氣池多少個?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知拋物線.

1)當時,

拋物線的對稱軸為________;

若在拋物線上有兩點,且,則的取值范圍是________;

2)拋物線的對稱軸與軸交于點,點與點關于軸對稱,將點向右平移3個單位得到點,若拋物線與線段恰有一個公共點,結合圖象,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】邊長為2的正方形在平面直角坐標系中的位置如圖所示,點是邊的中點,連接,點在第一象限,且,.以直線為對稱軸的拋物線過兩點.

1)求拋物線的解析式;

2)點從點出發(fā),沿射線每秒1個單位長度的速度運動,運動時間為.過點于點,當為何值時,以點,為頂點的三角形與相似?

3)點為直線上一動點,點為拋物線上一動點,是否存在點,,使得以點,,,為頂點的四邊形是平行四邊形?若存在,請直接寫出滿足條件的點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明和小亮玩一個游戲:三張大小、質地都相同的卡片上分別標有數(shù)字2,3,4(背面完全相同),現(xiàn)將標有數(shù)字的一面朝下小明從中任意抽取一張記下數(shù)字后放回洗勻,然后小亮從中任意抽取一張計算小明和小亮抽得的兩個數(shù)字之和若和為奇數(shù),則小明勝;若和為偶數(shù),則小亮勝

(1)請你用畫樹狀圖或列表的方法,求出這兩數(shù)和為6的概率

(2)你認為這個游戲規(guī)則對雙方公平嗎?說說你的理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】東坡商貿公司購進某種水果成本為20/,經(jīng)過市場調研發(fā)現(xiàn),這種水果在未來48天的銷售單價(元/)與時間(天)之間的函數(shù)關系式,為整數(shù),且其日銷售量()與時間(天)的關系如下表:

時間(天)

1

3

6

10

20

日銷售量

118

114

108

100

80

1)已知之間的變化符合一次函數(shù)關系,試求在第30天的日銷售量;

2)哪一天的銷售利潤最大?最大日銷售利潤為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在反比例函數(shù)圖象中,△AOB是等邊三角形,點A在雙曲線的一支上,將△AOB繞點O順時針旋轉α α360° ),使點A仍在雙曲線上,則α_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:在平面直角坐標系中,點和點分別在軸和軸的正半軸上,的平分線與正比例函數(shù)交于點,且與相交于點,在軸負半軸上有一點.

1)如圖1,求證:;

2)如圖2,過點,垂足為,連接,求證:;

3)如圖3,在(2)的條件下,過點,垂足為點,交于點,連接,若,,求直線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將拋物線向左平移2個單位,再向上平移4個單位得到一個新的拋物線.

1)求新的拋物線的解析式.

2)過作直線,使得直線與新的拋物線僅有一個公共點,求直線的解析式及相應公共點的坐標.

3)請猜想在新的拋物線上是否有且僅有四個點、、、使得、、分別與(2)中的所有公共點所圍成的圖形的面積均為S?若有,請求出S并直接寫出、、的坐標,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案