【題目】某校舉行全員賽課比賽,八年級(jí)3位數(shù)學(xué)老師分別記為A,B,C,(其中A是女老師,B,C是男老師)被安排在星期二下午三節(jié)上,他們通過抽簽決定上課順序。

1)女老師A不希望上第一節(jié)課,卻偏偏抽到上第一節(jié)課的概率是

2)試用畫樹狀圖或列表的方法表示這次抽簽所有可能的結(jié)果,并求女老師A比男老師B先上課的概率.

【答案】(1);(2).

【解析】

1)根據(jù)概率公式計(jì)算即可求得結(jié)果;
2)畫樹狀圖得出所有等可能結(jié)果,再從中找到符合條件的結(jié)果數(shù),利用概率公式計(jì)算即可得結(jié)果.

解:(1 ∵下午上第一節(jié)課的有3種等可能結(jié)果,
∴女老師抽到上第一節(jié)課的概率是 ;

2)畫樹狀圖為

一共有6種等可能結(jié)果,其中女老師A比男老師B先上課的結(jié)果數(shù)為3

P(女老師A比男老師B先上課)= .

故答案為:(1 ;(2 .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:在一次數(shù)學(xué)社團(tuán)活動(dòng)課上,同學(xué)們測(cè)量一座古塔CD的高度,他們首先在A處安置測(cè)量器,測(cè)得塔頂C的仰角∠CFE30°,然后往塔的方向前進(jìn)100米到達(dá)B處,此時(shí)測(cè)得塔頂C的仰角∠CGE60°,已知測(cè)量器高1.5米,請(qǐng)你根據(jù)以上數(shù)據(jù)計(jì)算出古塔CD的高度.(保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種蔬菜每千克售價(jià)(元)與銷售月份之間的關(guān)系如圖1所示,每千克成本(元)與銷售月份之間的關(guān)系如圖2所示,其中圖1中的點(diǎn)在同一條線段上,圖2中的點(diǎn)在同一條拋物線上,且拋物線的最低點(diǎn)的坐標(biāo)為(6,1).

1)求出之間滿足的函數(shù)表達(dá)式,并直接寫出的取值范圍;

2)求出之間滿足的函數(shù)表達(dá)式;

3)設(shè)這種蔬菜每千克收益為元,試問在哪個(gè)月份出售這種蔬菜,將取得最大值?并求出此最大值.(收益=售價(jià)-成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ADABC的角平分線,線段AD的垂直平分線分別交ABAC于點(diǎn)E、F,連接DE、DF.

(1)試判定四邊形AEDF的形狀,并證明你的結(jié)論.

(2)若DE=13,EF=10,求AD的長.

(3)ABC滿足什么條件時(shí),四邊形AEDF是正方形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】元旦期間,某超市銷售兩種不同品牌的蘋果,已知1千克甲種蘋果和1千克乙種蘋果的進(jìn)價(jià)之和為18元.當(dāng)銷售1千克甲種蘋果和1千克乙種蘋果利潤分別為4元和2元時(shí),陳老師購買3千克甲種蘋果和4千克乙種蘋果共用82元.

(1)求甲、乙兩種蘋果的進(jìn)價(jià)分別是每千克多少元?

(2)在(1)的情況下,超市平均每天可售出甲種蘋果100千克和乙種蘋果140千克,若將這兩種蘋果的售價(jià)各提高1元,則超市每天這兩種蘋果均少售出10千克,超市決定把這兩種蘋果的售價(jià)提高x元,在不考慮其他因素的條件下,使超市銷售這兩種蘋果共獲利960元,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB=AC,BC=2,將△ABC繞點(diǎn)C順針方向旋轉(zhuǎn)α(0°<α<360°),得到△DEC,使點(diǎn)EAB邊上。

1)如圖1,連接AD,

①求證:四邊形ABCD是平行四邊形;

當(dāng)AE=AD時(shí),求旋轉(zhuǎn)角α的度數(shù);

2)如圖2,若AE=2BE,AB的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,現(xiàn)將平行四邊形ABCD沿其對(duì)角線AC折疊,使點(diǎn)B落在點(diǎn)B處.ABCD交于點(diǎn)E

1)求證:△AED≌△CEB;

2)過點(diǎn)EEFACAB于點(diǎn)F,連接CF,判斷四邊形AECF的形狀并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A的坐標(biāo)是(40),并且OA=OC=4OB,動(dòng)點(diǎn)P在過A,BC三點(diǎn)的拋物線上.

1)求拋物線的解析式;

2)是否存在點(diǎn)P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,說明理由;

3)過動(dòng)點(diǎn)PPE垂直于y軸于點(diǎn)E,交直線AC于點(diǎn)D,過點(diǎn)Dx軸的垂線.垂足為F,連接EF,當(dāng)線段EF的長度最短時(shí),求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=2,點(diǎn)E在邊AD上,ABE=45°,BE=DE,連接BD,點(diǎn)P在線段DE上,過點(diǎn)P作PQBD交BE于點(diǎn)Q,連接QD.設(shè)PD=x,PQD的面積為y,則能表示y與x函數(shù)關(guān)系的圖象大致是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案