【題目】如圖,直線交坐標軸于、兩點,交拋物線于點,且是線段的中點,拋物線上另有位于第一象限內的一點,過的直線交坐標軸于、兩點,且恰好是線段的中點,若,則點的坐標是________

【答案】

【解析】

先求出二次函數(shù)的解析式,然后根據(jù)C為AB中點表示出A,B的坐標,利用三角形相似設出D的坐標并表示出E的坐標,根據(jù)P為線段DE的中點表示出P的坐標,代入即可求值.

:∵拋物線經過點

∴拋物線的解析式為y=x2,

∵C是線段AB的中點,

∴B(0,6),A(8,0)

∵△AOB∽△DOE

設點D的坐標為(0,a),則點E的坐標為(,0),

∵點P為DE的中點,

∴點P的坐標為(,),

∵點P在拋物線y=x2上,

2,

解得:a=,

∴P點坐標.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,若二次函數(shù)y=ax2+bx+c(a≠0)圖象的對稱軸為x=1,與y軸交于點C,與x軸交于點A、點B(﹣1,0),則

①二次函數(shù)的最大值為a+b+c;

a﹣b+c<0;

b2﹣4ac<0;

④當y>0時,﹣1<x<3,其中正確的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】建立適當?shù)淖鴺讼担\用函數(shù)知識解決下面的問題:

如圖,是某條河上的一座拋物線形拱橋,拱橋頂部點E到橋下水面的距離EF3米時,水面寬AB6米,一場大雨過后,河水上漲,水面寬度變?yōu)?/span>CD,且CD=2米,此時水位上升了多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下表:

則一元二次方程x2-2x-2=0在精確到0.1時一個近似根是______,利用拋物線的對稱性,可推知該方程的另一個近似根是_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,一段街道的兩邊沿所在直線分別為AB,PQ,并且ABPQ,建筑物的一端DE所在的直線MNAB于點M,交PQ于點N,小亮從勝利街的A處,沿著AB方向前進,小明一直站在點P的位置等待小亮.

(1)請你畫出小亮恰好能看見小明的視線,以及此時小亮所在的位置(用點C標出).

(2)已知:MN=30 m,MD=12 m,PN=36 m.求(1)中的點C到勝利街口的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,某大學的樓門是一拋物線形水泥建筑物,大門的地面寬度為,兩側距離地面高處各有一個掛校名橫匾用的鐵環(huán),兩鐵環(huán)的水平距離為,則校門的高約為(精確到,水泥建筑物的厚度忽略不計)( )

A. 9.2m B. 9.1m C. 9.0m D. 8.9m

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,六邊形ABCDEF∽六邊形GHIJKL,相似比為21,則下列結論正確的是( )

A. ∠E=2∠K B. BC=2HI C. 六邊形ABCDEF的周長=六邊形GHIJKL的周長 D. S六邊形ABCDEF=2S六邊形GHIJKL

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將正方形網格放置在平面直角坐標系中,其中每個小正方形的邊長均為1,△ABC經過平移后得到△A1B1C1,若AC上一點P(1.2,1.4)平移后對應點為P1,點P1繞原點順時針旋轉180°,對應點為P2,則點P2的坐標為( 。

A. (2.8,3.6) B. (﹣2.8,﹣3.6)

C. (3.8,2.6) D. (﹣3.8,﹣2.6)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c和直線y=x+1交于A,B兩點,點Ax軸上,點B在直線x=3上,直線x=3x軸交于點C

(1)求拋物線的解析式;

(2)點P從點A出發(fā),以每秒個單位長度的速度沿線段AB向點B運動,點Q從點C出發(fā),以每秒2個單位長度的速度沿線段CA向點A運動,點P,Q同時出發(fā),當其中一點到達終點時,另一個點也隨之停止運動,設運動時間為t秒(t>0).以PQ為邊作矩形PQNM,使點N在直線x=3上.

①當t為何值時,矩形PQNM的面積最?并求出最小面積;

②直接寫出當t為何值時,恰好有矩形PQNM的頂點落在拋物線上.

查看答案和解析>>

同步練習冊答案