【題目】如圖,是正方形的邊上的動點,是邊延長線上的一點,且,,設(shè),.
(1)當(dāng)是等邊三角形時,求的長;
(2)求與的函數(shù)解析式,并寫出它的定義域;
(3)把沿著直線翻折,點落在點處,試探索:能否為等腰三角形?如果能,請求出的長;如果不能,請說明理由.
【答案】(1);(2);(3)答案見解析.
【解析】
(1)當(dāng)△BEF是等邊三角形時,有∠ABE=∠ABC-∠EBC=90°-60°=30°,則可解Rt△ABE,求得BF即BE的長.
(2)作EG⊥BF,垂足為點G,則四邊形AEGB是矩形,在Rt△EGF中,由勾股定理知,EF2=(BF-BG)2+EG2.即y2=(y-x)2+122.故可求得y與x的關(guān)系.
(3)當(dāng)把△ABE沿著直線BE翻折,點A落在點A'處,應(yīng)有∠BA'F=∠BA'E=∠A=90°,若△A'BF成為等腰三角形,必須使A'B=A'F=AB=12,有FA′=EF-A′E=y-x=12,故可由(2)得到的y與x的關(guān)系式建立方程組求得AE的值.
解:(1)當(dāng)是等邊三角形時,,
∵,
∴,
∴;
(2)作,垂足為點,
根據(jù)題意,得,,.
∴.
∴所求的函數(shù)解析式為;
(3)∵,
∴點落在上,
∴,,
∴要使成為等腰三角形,必須使.
而,,
∴,由(2)關(guān)系式可得:,
整理得,
解得,
經(jīng)檢驗:都原方程的根,
但不符合題意,舍去,
所以當(dāng)時,為等要三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與相交于點,是的平分線,,.
(1)圖中∠BOE的補角是
(2)若∠COF=2∠COE,求的度數(shù);
(3) 試判斷OF是否平分∠AOC,并說明理由;請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)九年級數(shù)學(xué)興趣小組,在廣場上測量位于正東方向的某建筑物AC的高度,如圖所示,他先在點B測得該建筑物頂點A的仰角為30°,然后向正東方向前行62米,到達(dá)D點,再測得該建筑物頂點A的仰角為60°(B、C、D三點在同一水平面上,且測量儀的高度忽略不計).求該建筑物AC的高度(結(jié)果精確的1米,參考數(shù)值:)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(閱讀理解)對于任意正實數(shù)a、b,
∵(﹣)2≥0,
∴a﹣2+b≥0,
∴a+b≥2,(只有當(dāng)a=b時,a+b等于2).
(1)(獲得結(jié)論)在a+b≥2(a、b均為正實數(shù))中,若ab為定值p,
則a+b≥2,只有當(dāng)a=b時,a+b有最小值2.
根據(jù)上述內(nèi)容,回答下列問題:若m>0,只有當(dāng)m= 時,m+有最小值 .
(2)(探索應(yīng)用)已知點Q(﹣3,﹣4)是雙曲線y=上一點,過Q作QA⊥x軸于點A,作QB⊥y軸于點B.點P為雙曲線y=(x>0)上任意一點,連接PA,PB,求四邊形AQBP的面積的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)習(xí)有理數(shù)得乘法后,老師給同學(xué)們這樣一道題目:
計算:49×(﹣5),看誰算的又快又對,有兩位同學(xué)的解法如下:
聰聰:原式=﹣×5=﹣=﹣249;
明明:原式=(49+)×(﹣5)=49×(﹣5)+×(﹣5)=﹣249;
(1)對于以上兩種解法,你認(rèn)為誰的解法較好?
(2)上面的解法對你有何啟發(fā),你認(rèn)為還有更好的方法嗎?如果有,請把它寫出來;
(3)用你認(rèn)為最合適的方法計算:29×(﹣8)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】勾股定理是人類最偉大的科學(xué)發(fā)現(xiàn)之一,在我國古算書《周髀算經(jīng)》中早有記載.如圖1,以直角三角形的各邊為邊分別向外作正方形,再把較小的兩張正方形紙片按圖2的方式放置在最大正方形內(nèi).若知道圖中陰影部分的面積,則一定能求出( )
A.直角三角形的面積
B.最大正方形的面積
C.較小兩個正方形重疊部分的面積
D.最大正方形與直角三角形的面積和
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小敏在研究數(shù)學(xué)問題時遇到一個定義:將三個已經(jīng)排好順序數(shù):x1,x2,x3,稱為數(shù)列x1,x2,x3.計算|x1|,,,將這三個數(shù)的最小值稱為數(shù)列x1,x2,x3的最佳值.例如,對于數(shù)列2,-1,3,因為|2|=2,=,=,所以數(shù)列2,-1,3的最佳值為.
小敏進一步發(fā)現(xiàn):當(dāng)改變這三個數(shù)的順序時,所得到的數(shù)列都可以按照上述方法計算其相應(yīng)的最佳值.如數(shù)列-1,2,3的最佳值為;數(shù)列3,-1,2的最佳值為1;….經(jīng)過研究,小敏發(fā)現(xiàn),對于“2,-1,3”這三個數(shù),按照不同的排列順序得到的不同數(shù)列中,最佳值的最小值為.根據(jù)以上材料,回答下列問題:
(1)數(shù)列-4,-3,1的最佳值為______;
(2)將“-4,-3,2”這三個數(shù)按照不同的順序排列,可得到若干個數(shù)列,這些數(shù)列的最佳值的最小值為______,取得最佳值最小值的數(shù)列為______(寫出一個即可);
(3)將2,-9,a(a>1)這三個數(shù)按照不同的順序排列,可得到若干個數(shù)列.若這些數(shù)列的最佳值為1,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在□ABCD中,∠BAD,∠BCD的平分線分別交BC,AD于點F,E.
(1)求證:四邊形AFCE是平行四邊形;
(2)若BF=4,FC=3,求□ABCD的周長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com