【題目】直線y=ax+b經(jīng)過第二、三、四象限,那么下列結(jié)論正確的是( 。

A. =a+b

B. 點(a,b)在第一象限內(nèi)

C. 反比例函數(shù),當x>0時,函數(shù)值yx增大而減小

D. 拋物線y=ax2+bx+c的對稱軸過二、三象限

【答案】D

【解析】

先根據(jù)直線經(jīng)過的象限確定出a、b的取值范圍,然后再根據(jù)二次根式的性質(zhì)、象限內(nèi)點的坐標特征、反比例函數(shù)的性質(zhì)、二次函數(shù)的性質(zhì)逐項進行判斷即可得.

直線y=ax+b經(jīng)過第二、三、四象限,則a<0,b<0.

A、=﹣a﹣b,故A錯誤;

B、點(a,b)在第三象限,故B錯誤;

C、反比例函數(shù),當x>0時,函數(shù)值yx的增大而增大,故C錯誤;

D、拋物線y=ax2+bx+c的對稱軸過二、三象限,是正確的,

故選D.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知,是方程的兩根,且,,實數(shù),,,的大小關系可能是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,的中點,是線段延長線上一點,過點,與線段的延長線交于點,連結(jié)、

求證:

,試判斷四邊形是什么樣的四邊形,并證明你的結(jié)論;

的中點,求證:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)觀察與發(fā)現(xiàn):小明將三角形紙片沿過點的直線折疊,使得落在邊上,折痕為,展開紙片(如圖①);在第一次的折疊基礎上第二次折疊該三角形紙片,使點和點重合,折痕為,展平紙片后得到(如圖②).小明認為是等腰三角形,你同意嗎?請說明理由.

(2)實踐與運用:將矩形紙片沿過點的直線折疊,使點落在邊上的點,折痕為 (如圖③);再沿過點的直線折疊,使點落在上的點,折痕為 (如圖④);再展平紙片(如圖⑤).求圖⑤中的大小。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某游泳館普通票價20/暑假為了促銷,新推出兩種優(yōu)惠卡

金卡售價600/,每次憑卡不再收費

銀卡售價150/每次憑卡另收10

暑假普通票正常出售,兩種優(yōu)惠卡僅限暑假使用,不限次數(shù).設游泳x次時所需總費用為y

(1)分別寫出選擇銀卡、普通票消費時,yx之間的函數(shù)關系式;

(2)在同一坐標系中,若三種消費方式對應的函數(shù)圖象如圖所示,請求出點A、B、C的坐標

(3)請根據(jù)函數(shù)圖象,直接寫出選擇哪種消費方式更合算

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊△ABC中,線段AM為BC邊上的中線.動點D在直線AM上時,以CD為一邊在CD的下方作等邊△CDE,連結(jié)BE.
(1)填空:∠CAM=__________度;
(2)若點D在線段AM上時,求證:△ADC≌△BEC;
(3)當動點D在直線AM上時,設直線BE與直線AM的交點為O,試判斷∠AOB是否為定值?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將圖1中的矩形ABCD沿對角線AC剪開,再把△ABC沿著AD方向平移,得到圖2中的△ABC′.

1)在圖2中,除△ADC與△CBA′全等外,請寫出其他2組全等三角形;   ;   

2)請選擇(1)中的一組全等三角形加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線與x軸交兩點A(﹣1,0),B(3,0),過點A作直線AC與拋物線交于C點,它的坐標為(2,﹣3).

(1)求拋物線及直線AC的解析式;

(2)P是線段AC上的一個動點,(不與A,C重合),過P點作y軸的平行線交拋物線于E點,點E與點A、C圍成三角形,求出ACE面積的最大值;

(3)點G為拋物線上的動點,在x軸上是否存在點F,使A、C、F、G這樣的四個點為頂點的四邊形是平行四邊形?如果存在,直接寫出所有滿足條件的F點坐標;如果不存在,如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的圖象與軸交于點、,且,與軸的正半軸的交點在的下方.下列結(jié)論:①;②;③;④.其中正確結(jié)論的個數(shù)是( )個.

A. 4個 B. 3個 C. 2個 D. 1個

查看答案和解析>>

同步練習冊答案