【題目】ABC中,AB17,BC21,AC10,動點P從點C出發(fā),沿著CB運動,速度為每秒3個單位,到達(dá)點B時運動停止,設(shè)運動時間為t秒,請解答下列問題:

1)求BC上的高;

2)當(dāng)t為何值時,ACP為等腰三角形?

【答案】18;(2;4;

【解析】

1)過點AADBC于點D,設(shè)CDx,則BD21x,再根據(jù)勾股定理求出x的值,進(jìn)而可得出AD的長;

2)分ACPC,APACAPPC三種情況進(jìn)行討論.

1)過點AADBC于點D,設(shè)CD=x,則BD=21-x,

∵△ABDACD均為直角三角形,

AB2-BD2=AC2-CD2,即172-21-x2=102-x2,解得x=6,

AD===8

故答案為:8;

2)當(dāng)AC=PC時,

AC=10

AC=PC=10,

t=秒;

當(dāng)AP=AC時,過點AADBC于點D,由(1)知,CD=6,

PC=12,

t==4秒;

當(dāng)AP=PC時,過點PPEAC于點E,

AC=10

CE=5,

,即=,解得PC=

(秒)

綜上所述,t=秒或4秒或秒,

故答案為:;4;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的對角線AC、BD相交于點O,過點DDEAC,且DEAC,連接CE、OE,連接AEOD于點F

1)求證:OECD;

2)若菱形ABCD的邊長為8,∠ABC60°,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八年級兩個班,各選派10名學(xué)生參加學(xué)校舉行的漢字聽寫大賽.各參賽選手成績的數(shù)據(jù)分析如下表所示,則以下判斷錯誤的是( 。

A. 八(2)班的總分高于八(1)班 B. 八(2)班的成績比八(1)班穩(wěn)定

C. 八(2)班的成績集中在中上游 D. 兩個班的最高分在八(2)班

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點,,點C是直線AB上異于點B的任一點,現(xiàn)以BC為一邊在AB右側(cè)作正方形BCDE,射線OC與直線DE交于點P,若點C的橫坐標(biāo)為m.

求直線AB的函數(shù)表達(dá)式.

若點C在第一象限,且點COP的中點,求m的值.

若點COP的三等分點即點COP1:2的兩條線段,請直接寫出點C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的是(  )

A. 當(dāng)ABBC時,它是菱形 B. 當(dāng)ACBD時,它是菱形

C. 當(dāng)∠ABC90°時,它是矩形 D. 當(dāng)ACBD時,它是正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,點D為邊AC上一點,于點E,點MBD中點,CM的延長線交AB于點F

1)求證:CM=EM

2)若,求的大小;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結(jié)論的個數(shù)是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,我們已經(jīng)學(xué)過:點C將線段AB分成兩部分,如果,那么稱點C為線段AB的黃金分割點.某校的數(shù)學(xué)拓展性課程班,在進(jìn)行知識拓展時,張老師由黃金分割點拓展到“黃金分割線”,類似地給出“黃金分割線”的定義:直線l將一個面積為S的圖形分成兩部分,這兩部分的面積分別為S1,S2,如果,那么稱直線l為該圖形的黃金分割線.

如圖2,在ABC中,∠A=36°,AB=AC,∠C的平分線交AB于點D.

(1)證明點D是AB邊上的黃金分割點;

(2)證明直線CD是ABC的黃金分割線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=x2+bx+c與x軸交于A,B兩點,與y軸交于點C,O是坐標(biāo)原點,點A的坐標(biāo)是(﹣1,0),點C的坐標(biāo)是(0,﹣3).

(1)求拋物線的函數(shù)表達(dá)式;

(2)求直線BC的函數(shù)表達(dá)式和ABC的度數(shù);

(3)P為線段BC上一點,連接AC,AP,若ACB=PAB,求點P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案