(2008•濮陽)如圖,已知:在四邊形ABFC中,∠ACB=90°,BC的垂直平分線EF交BC于點D,交AB于點E,且CF=AE.
(1)試探究,四邊形BECF是什么特殊的四邊形?
(2)當(dāng)∠A的大小滿足什么條件時,四邊形BECF是正方形?請回答并證明你的結(jié)論.(特別提醒:表示角最好用數(shù)字)

【答案】分析:(1)根據(jù)中垂線的性質(zhì):中垂線上的點到線段兩個端點的距離相等,有BE=EC,BF=FC,根據(jù)四邊相等的四邊形是菱形即可判斷;
(2)由菱形的性質(zhì)知,對角線平分一組對角,即當(dāng)∠ABC=45°時,∠EBF=90°,有菱形為正方形,根據(jù)直角三角形中兩個角銳角互余得,∠A=45度.
解答:解:(1)四邊形BECF是菱形.
證明:∵BC的垂直平分線為EF,
∴BF=FC,BE=EC,
∴∠1=∠3,
∵∠ACB=90°,
∴∠1+∠2=90°,∠3+∠A=90°,
∴∠2=∠A,
∴EC=AE,
又∵CF=AE,BE=EC
∴BE=EC=CF=BF,
∴四邊形BECF是菱形.

(2)當(dāng)∠A=45°時,菱形BECF是正方形.
證明:∵∠A=45°,∠ACB=90°,
∴∠1=45°,
∴∠EBF=2∠A=90°,
∴菱形BECF是正方形.
點評:本題利用了:菱形的判定和性質(zhì)及中垂線的性質(zhì)、直角三角形的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(04)(解析版) 題型:填空題

(2008•濮陽)如圖,直線y=kx-2(k>0)與雙曲線y=在第一象限內(nèi)的交點為R,與x軸的交點為P,與y軸的交點為Q;作RM⊥x軸于點M,若△OPQ與△PRM的面積比是4:1,則k=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年河南省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•濮陽)如圖,拋物線y=ax2+bx+c與x軸交于A、B兩點(點A在點B左側(cè)),與y軸交于點C,且當(dāng)x=O和x=4時,y的值相等.直線y=4x-16與這條拋物線相交于兩點,其中一點的橫坐標是3,另一點是這條拋物線的頂點M.
(1)求這條拋物線的解析式;
(2)P為線段OM上一點,過點P作PQ⊥x軸于點Q.若點P在線段OM上運動(點P不與點O重合,但可以與點M重合),設(shè)OQ的長為t,四邊形PQCO的面積為S,求S與t之間的函數(shù)關(guān)系式及自變量t的取值范圍;
(3)隨著點P的運動,四邊形PQCO的面積S有最大值嗎?如果S有最大值,請求出S的最大值,并指出點Q的具體位置和四邊形PQCO的特殊形狀;如果S沒有最大值,請簡要說明理由;
(4)隨著點P的運動,是否存在t的某個值,能滿足PO=OC?如果存在,請求出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年河南省中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2008•濮陽)如圖,直線y=kx-2(k>0)與雙曲線y=在第一象限內(nèi)的交點為R,與x軸的交點為P,與y軸的交點為Q;作RM⊥x軸于點M,若△OPQ與△PRM的面積比是4:1,則k=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年河南省南陽市南陽油田中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2008•濮陽)如圖,直線y=kx-2(k>0)與雙曲線y=在第一象限內(nèi)的交點為R,與x軸的交點為P,與y軸的交點為Q;作RM⊥x軸于點M,若△OPQ與△PRM的面積比是4:1,則k=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年河南省南陽市南陽油田中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2008•濮陽)如圖是二次函數(shù)y=a(x+1)2+2圖象的一部分,該圖在y軸右側(cè)與x軸交點的坐標是   

查看答案和解析>>

同步練習(xí)冊答案