【題目】如圖1~4,在直角邊分別為3和4的直角三角形中,每多作一條斜邊上的高就增加一個三角形的內切圓,依此類推,圖10中有10個直角三角形的內切圓,它們的面積分別記為S1,S2,S3,…,S10,則S1+S2+S3+…+S10=

【答案】.

【解析】

試題分析:(1)如圖1,過點O做OEAC,OFBC,垂足為E、F,則OEC=OFC=90°,∵∠C=90°四邊形OECF為矩形.OE=OF,矩形OECF為正方形.設圓O的半徑為r,則OE=OF=r,AD=AE=3r,BD=4r.3r+4+r=5,S1=π×12=π; (2)圖2,由SABC=,CD=.

在RtACD中:, .由(1)得:O的半徑為 ,E的半徑為..

(3)圖3,由SCDB=,. ,.由(1)得:O的半徑=,:E的半徑=,:F的半徑=.S1+S2+S3=π.同理可得S1+S2+S3+S4=.則S1+S2+S3++S10=π.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,ABC是等腰直角三角形,BAC= 90°,AB=AC,四邊形ADEF是正方形,點B、C分別在邊AD、AF上,此時BD=CF,BDCF成立.

(1)當ABC繞點A逆時針旋轉θ(0°θ<90°)時,如圖2,BD=CF成立嗎?若成立,請證明;若不成立,請說明理由.

(2)當ABC繞點A逆時針旋轉45°時,如圖3,延長DB交CF于點H.

求證:BDCF;

當AB=2,AD=3時,求線段DH的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知∠ABC的兩邊分別與∠DEF的兩邊垂直,且∠ABC=35°,則∠DEF的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用反證法證明一個三角形中不能有兩個角是直角的第一步是假設這個三角形中________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若等式2(﹣2=0成立,則“”內的運算符號是( ).

A.B.C.×D.÷

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標中,ABC三個頂點坐標為A(,0)、B(,0)、C(0,3).

(1)求ABC內切圓D的半徑.

(2)過點E(0,1)的直線與D相切于點F(點F在第一象限),求直線EF的解析式.

(3)以(2)為條件,P為直線EF上一點,以P為圓心,以2為半徑作P.若P上存在一點到ABC三個頂點的距離相等,求此時圓心P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】半徑分別為15的兩個圓相交,它們的圓心距可以是(

A. 3B. 4C. 5D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果向南走48m,記作﹢48m,則向北走56m,記作_____________。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=6,BC=8,CD=24,AD=26,∠B=90°,以AD為直徑作圓O,過點D作DE∥AB交圓O于點E

(1)證明點C在圓O上;

(2)求tan∠CDE的值;

(3)求圓心O到弦ED的距離.

查看答案和解析>>

同步練習冊答案