【題目】在平面直角坐標(biāo)xOy中,拋物線ymx2-2mxm-1(m>0)與x軸的交點(diǎn)為A,B,頂點(diǎn)為C,將拋物線在A,C,B之間的部分記為圖象E(A,B兩點(diǎn)除外).

(1)求拋物線的頂點(diǎn)坐標(biāo).

(2)AB=6時(shí),經(jīng)過點(diǎn)C的直線ykxb(k≠0)與圖象E有兩個(gè)交點(diǎn),結(jié)合函數(shù)的圖象,求k的取值范圍.

(3)若橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫整點(diǎn).

①當(dāng)m=1時(shí),求線段AB上整點(diǎn)的個(gè)數(shù);

②若拋物線在點(diǎn)A,C,B之間的圖象E與線段AB所圍成的區(qū)域內(nèi)(包括邊界)恰有6個(gè)整點(diǎn),結(jié)合函數(shù)的圖象,求m的取值范圍.

【答案】(1)C(1,-1). (2)<k<0,或0<k<.(3)3個(gè)或5個(gè);<m≤ .

【解析】試題分析:(1)利用配方法將拋物線解析式變形為頂點(diǎn)式即可得到頂點(diǎn)坐標(biāo);(2)當(dāng)AB=6時(shí),拋物線與x軸的兩個(gè)交點(diǎn)分別是(-2,0),(4,0),又因?yàn)轫旤c(diǎn)為(-1,1),當(dāng)直線經(jīng)過CACB時(shí),分別解得k=± ,即可得k的取值范圍;(3)①當(dāng)時(shí)m=1,拋物線表達(dá)式為yx2-2x,令y=0,解方程即可得到點(diǎn)A、點(diǎn)B的坐標(biāo),再數(shù)出線段上的整點(diǎn)數(shù)即可;②拋物線頂點(diǎn)為(1,-1),則指定區(qū)域的整點(diǎn)的縱坐標(biāo)只能為-1或者0,所以即要求AB線段上(含AB兩點(diǎn))必須有5個(gè)整點(diǎn);令拋物線解析式為0,,解方程得到用m表示的點(diǎn)、橫坐標(biāo),根據(jù)題意得不等式解之即可.

試題解析:

⑴原拋物線解析式為ymx2-2mxm-1(m>0),提取公因式并配方得 ,所以該拋物線的頂點(diǎn)坐標(biāo)為 (1,-1);

⑵AB=6時(shí),拋物線與x軸的兩個(gè)交點(diǎn)分別是(-2,0),(4,0),又因?yàn)轫旤c(diǎn)為(-1,1),當(dāng)直線經(jīng)過C與A,C與B時(shí),分別解得k=,所以k的取值范圍為<k<0,或0<k<.

⑶①當(dāng)m=1時(shí),拋物線表達(dá)式為y=x2-2x,因此A、B的坐標(biāo)分別為(0,0)和(2,0),則線段AB上的整點(diǎn)有(0,0),(1,0),(2,0)共3個(gè).

②拋物線頂點(diǎn)為(1,-1),則指定區(qū)域的整點(diǎn)的縱坐標(biāo)只能為-1或者0,所以即要求AB線段上(含AB兩點(diǎn))必須有5個(gè)整點(diǎn);

令y=mx2-2mx+m-1=0,得到A、B兩點(diǎn)坐標(biāo)分別為(,0),(,0),即5個(gè)整點(diǎn)是以(1,0)為中心向兩側(cè)分散,

進(jìn)而得到2≤<3,所以<m≤ .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為創(chuàng)建“美麗鄉(xiāng)村”,某村計(jì)劃購買甲、乙兩種樹苗共400棵,對(duì)本村道路進(jìn)行綠化改造,已知甲種樹苗每棵200元,乙種樹苗每棵300元.
(1)若購買兩種樹苗的總金額為90000元,求需購買甲、乙兩種樹苗各多少棵?
(2)若購買甲種樹苗的金額不少了購買乙種樹苗的金額,則至少應(yīng)購買甲種樹苗多少棵?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國慶長(zhǎng)假里,小華和爸爸、媽媽一家三口去旅游,甲旅行社說:“大人買全票,小孩半價(jià)優(yōu)惠”.乙旅行社說:“大人、小孩全部按票價(jià)的八折優(yōu)惠”.若原票價(jià)為α元,問小華家選擇哪個(gè)旅行社合算,請(qǐng)說出理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運(yùn)算正確的是( )
A.a2+a2=a4
B.(ab)2=ab2
C.a6÷a2=a3
D.(2a23=8a6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式:a2b﹣4ab2+4b3=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】因式分解:

(1)6xy2-9x2yy3; (2)(p-4)(p+1)+3p.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線經(jīng)過點(diǎn)E(1,0)和F(5,0),并交y軸于D(0,-5);拋物線a≠0),

(1)試求拋物線的函數(shù)解析式;

(2)求證: 拋物線 x軸一定有兩個(gè)不同的交點(diǎn);

(3)若a=1

①拋物線頂點(diǎn)分別為 ( , )、( , ) ;當(dāng)x的取值范圍是_________ 時(shí),拋物線、 上的點(diǎn)的縱坐標(biāo)同時(shí)隨橫坐標(biāo)增大而增大;

②已知直線MN分別與x軸、、分別交于點(diǎn)Pm,0)、M、N,且MNy軸,當(dāng)1≤m≤5時(shí),求線段MN的最大值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)不透明的布袋里裝有16個(gè)只有顏色不同的球,其中紅球有x個(gè),白球有2x個(gè),其他均為黃球,現(xiàn)甲從布袋中隨機(jī)摸出一個(gè)球,若是紅球則甲同學(xué)獲勝,甲同學(xué)把摸出的球放回并攪勻,由乙同學(xué)隨機(jī)摸出一個(gè)球,若為黃球,則乙同學(xué)獲勝。

(1)當(dāng)X=3時(shí),誰獲勝的可能性大?

(2)當(dāng)x為何值時(shí),游戲?qū)﹄p方是公平的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市中小學(xué)全面開展“陽光體育”活動(dòng),某校在大課間中開設(shè)了A:體操,B:跑操,C:舞蹈,D:健美操四項(xiàng)活動(dòng),為了解學(xué)生最喜歡哪一項(xiàng)活動(dòng),隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖回答下列問題:

(1)這次被調(diào)查的學(xué)生共有人.
(2)請(qǐng)將統(tǒng)計(jì)圖2補(bǔ)充完整.
(3)統(tǒng)計(jì)圖1中B項(xiàng)目對(duì)應(yīng)的扇形的圓心角是度.
(4)已知該校共有學(xué)生3600人,請(qǐng)根據(jù)調(diào)查結(jié)果估計(jì)該校喜歡健美操的學(xué)生人數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案