【題目】已知⊙O的半徑長為50cm,弦AB長50cm.求:點OAB的距離

【答案】解:過O點向弦AB作垂線,垂足為M,根據(jù)垂徑定理可以得到AM=25cm,連接OA , 那么在直角三角形AOM中,根據(jù)勾股定理可以得到OM= cm,所以點O到AB的距離為 cm
【解析】 O點向弦AB作垂線,垂足為M,根據(jù)垂徑定理可以得到AM=25cm,連接OA , 那么在直角三角形AOM中,根據(jù)勾股定理可以得到OM= cm,所以點O到AB的距離為 cm
【考點精析】本題主要考查了勾股定理的概念和垂徑定理的相關知識點,需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩家超市以相同的價格出售同樣的商品,為了吸引顧客,各自推出不同的優(yōu)惠方案:在甲超市累計購買商品超出300元之后,超出部分按原價8折優(yōu)惠;在乙超市累計購買商品超出200元之后,超出部分按原價8.5折優(yōu)惠.設顧客預計累計購物元().

(1)請用含的代數(shù)式分別表示顧客在兩家超市購物所付的費用;

(2)李明準備購買500元的商品,你認為他應該去哪家超市?請說明理由;

(3)計算一下,李明購買多少元的商品時,到兩家超市購物所付的費用一樣?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O是以數(shù)軸原點O為圓心,半徑為1的圓,∠AOB=45°,點P在數(shù)軸上運動,過點P且與OB平行的直線與⊙O有公共點,求OP的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,函數(shù)y= y= - x+4的圖像交點為A、B,原點為O,求AOB面積.

【答案】8

【解析】整體分析:

聯(lián)立方程y= y= - x+4,求出點A,B的坐標,然后由公式△OAB的面積=×x1- x2)(y2- y1求解.

y=代入y= - x+4得,

= - x+4

解得x1=2+,x2=2-.

所以y1=2-,y2=2+.

A2-,2+),B2+,2-),

所以OAB的面積=×x1- x2)(y2- y1==×4×4=.

型】解答
束】
19

【題目】如圖,直線與雙曲線相交于A2,1)、B兩點.

1)求mk的值;

2)不解關于x、y的方程組直接寫出點B的坐標;

3)直線經(jīng)過點B嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖17Z10是由邊長為1的小正方形組成的網(wǎng)格

(1)求四邊形ABCD的面積;

(2)你能判斷ADCD的位置關系嗎?說出你的理由

17Z10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知兩條射線OM∥CN,動線段AB的兩個端點A、B分別在射線OM、CN上,且∠C=∠OAB=108°,F(xiàn)在線段CB上,OB平分∠AOF,OE平分∠COF.

(1)請在圖中找出與∠AOC相等的角,并說明理由;

(2)若平行移動AB,那么∠OBC與∠OFC的度數(shù)比是否隨著AB位置的變化而發(fā)生變化?若變化,找出變化規(guī)律;若不變,求出這個比值;

(3)在平行移動AB的過程中,是否存在某種情況,使∠OEC=2∠OBA?若存在,請求出∠OBA度數(shù);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,∠A+∠D=180°,∠1=3∠2,∠2=24°,點P是BC上的一點.

(1)請寫出圖中∠1的一對同位角,一對內(nèi)錯角,一對同旁內(nèi)角;

(2)求∠EFC與∠E的度數(shù);

(3)若∠BFP=46°,請判斷CE與PF是否平行?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1在正方形ABCD中,P是對角線BD上的一點,點EAD的延長線上,且PA=PE,PECDF.

(1)證明:PC=PE;

(2)求∠CPE的度數(shù)

(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,當∠ABC=120度時,連接CE,試探究線段AP與線段CE的數(shù)量關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)y=mx﹣3m2+12,請按要求解答問題:

(1)m為何值時,函數(shù)圖象過原點,且y隨x的增大而減?

(2)若函數(shù)圖象平行于直線y=﹣x,求一次函數(shù)解析式;

(3)若點(0,﹣15)在函數(shù)圖象上,求m的值.

查看答案和解析>>

同步練習冊答案