【題目】在一次海上救援中,兩艘專業(yè)救助船同時(shí)收到某事故漁船的求救訊息,已知此時(shí)救助船在的正北方向,事故漁船在救助船的北偏西30°方向上,在救助船的西南方向上,且事故漁船與救助船相距120海里.
(1)求收到求救訊息時(shí)事故漁船與救助船之間的距離;
(2)若救助船A,分別以40海里/小時(shí)、30海里/小時(shí)的速度同時(shí)出發(fā),勻速直線前往事故漁船處搜救,試通過計(jì)算判斷哪艘船先到達(dá).
【答案】(1)收到求救訊息時(shí)事故漁船與救助船之間的距離為海里;(2)救助船先到達(dá).
【解析】
(1)如圖,作于,在△PAC中先求出PC的長,繼而在△PBC中求出BP的長即可;
(2)根據(jù)“時(shí)間=路程÷速度”分別求出救助船A和救助船B所需的時(shí)間,進(jìn)行比較即可.
(1)如圖,作于,
則,
由題意得:海里,,,
∴海里,是等腰直角三角形,
∴海里,海里,
答:收到求救訊息時(shí)事故漁船與救助船之間的距離為海里;
(2)∵海里,海里,救助船分別以40海里/小時(shí)、30海里/小時(shí)的速度同時(shí)出發(fā),
∴救助船所用的時(shí)間為(小時(shí)),
救助船所用的時(shí)間為(小時(shí)),
∵,
∴救助船先到達(dá).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸交于點(diǎn),與軸交于點(diǎn),拋物線經(jīng)過點(diǎn),.
(1)求點(diǎn)B的坐標(biāo)和拋物線的解析式;
(2)M(m,0)為x軸上一個(gè)動(dòng)點(diǎn),過點(diǎn)M垂直于x軸的直線與直線AB和拋物線分別交于點(diǎn)P、N,
①點(diǎn)在線段上運(yùn)動(dòng),若以,,為頂點(diǎn)的三角形與相似,求點(diǎn)的坐標(biāo);
②點(diǎn)在軸上自由運(yùn)動(dòng),若三個(gè)點(diǎn),,中恰有一點(diǎn)是其它兩點(diǎn)所連線段的中點(diǎn)(三點(diǎn)重合除外),則稱,,三點(diǎn)為“共諧點(diǎn)”.請直接寫出使得,,三點(diǎn)成為“共諧點(diǎn)”的的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=8,BC=16,點(diǎn)D在邊BC上,沿DE將△ABC折疊,使點(diǎn)B與點(diǎn)A重合,連接AD,點(diǎn)P在線段AD上,當(dāng)點(diǎn)P到△ABC的直角邊距離等于5時(shí),AP的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)是矩形兩條對角線的交點(diǎn),E是邊上的點(diǎn),沿折疊后,點(diǎn)恰好與點(diǎn)重合.若,則折痕的長為 ( )
A. B. C. D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:和都是等邊三角形,點(diǎn)在邊上,連接.
(1)如圖1,求證:;
(2)如圖2,點(diǎn)在上,(),連接并延長交于點(diǎn),連接、,在不添加任何輔助線的情況下,請直接寫出圖2中所有與線段相等的線段(線段除外).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某校組織“學(xué)經(jīng)典,用經(jīng)典”知識(shí)競賽,每班參加比賽的學(xué)生人數(shù)相同,成績分為四個(gè)等級(jí),其中相應(yīng)等級(jí)的得分依次記為分,分,分,分,學(xué)校將某年級(jí)的一班和二班的成績整理并繪制成如下的統(tǒng)計(jì)圖:
請你根據(jù)以上提供的信息解答下列問題:
(1)此次競賽中二班成績“級(jí)”的人數(shù)為 ;
(2)請你將下表補(bǔ)充完整:
平均數(shù)(分) | 中位數(shù)(分) | 眾數(shù)(分) | |
一班 | |||
二班 |
(3)請你對這次兩班成績統(tǒng)計(jì)數(shù)據(jù)的結(jié)果進(jìn)行分析(寫出一條結(jié)論即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)活動(dòng)小組為了解全縣九年級(jí)學(xué)生在抗新冠病毒疫情期間平均每天居家鍛煉時(shí)間,向全縣部分學(xué)生進(jìn)行了抽樣調(diào)查,并將收集到的數(shù)據(jù)整理成如圖的統(tǒng)計(jì)圖(部分?jǐn)?shù)據(jù)未標(biāo)出).
(1)這次抽樣調(diào)查的學(xué)生人數(shù)一共有 人;
(2)求頻數(shù)分布表中 a 的值,并補(bǔ)全頻數(shù)分布直方圖; ,
(3)若該縣有 5000 名九年級(jí)學(xué)生,請你估計(jì)全縣九年級(jí)學(xué)生平均每天居家鍛煉時(shí)間不超過20分鐘的有多少人?
時(shí)間 x/分 | 人數(shù)/人 | 頻率 |
0<x≤10 | 102 | 25.5% |
10<x≤20 | 132 | 33% |
20<x≤30 | a | 17.5% |
30<x≤40 | 59 | 14.75% |
40<x≤50 | 29 | 7.25% |
50<x≤60 | 8 | 2% |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于A、B兩點(diǎn),與軸交于點(diǎn)C,四邊形OBHC為矩形,CH的延長線交拋物線于點(diǎn)D(5,-2),連接BC、AD.
(1)將矩形OBHC繞點(diǎn)B按逆時(shí)針旋轉(zhuǎn)90°后,再沿軸對折到矩形GBFE(點(diǎn)C與點(diǎn)E對應(yīng),點(diǎn)O與點(diǎn)G對應(yīng)),求點(diǎn)E的坐標(biāo);
(2)設(shè)過點(diǎn)E的直線交AB于點(diǎn)P,交CD于點(diǎn)Q.
①當(dāng)四邊形PQCB為平行四邊形時(shí),求點(diǎn)P的坐標(biāo);
②是否存在點(diǎn)P,使直線PQ分梯形ADCB的面積為1∶3兩部分?若存在,求出點(diǎn)P坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,且AB為⊙O的直徑.∠ACB的平分線交⊙O于點(diǎn)D,過點(diǎn)D作⊙O的切線PD交CA的延長線于點(diǎn)P,過點(diǎn)A作AE⊥CD于點(diǎn)E,過點(diǎn)B作BF⊥CD于點(diǎn)F.
(1)求證:EF +AE= BF ;
(2)求證:△PDA∽△PCD ;
(3)若AC=6,BC=8,求線段PD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com