【題目】在Rt△ABC中,∠ACB=90°,AC=15,AB=25,點D為斜邊AB上動點.
(1)如圖1,當CD⊥AB時,求CD的長度;
(2)如圖2,當AD=AC時,過點D作DE⊥AB交BC于點E,求CE的長度;
(3)如圖3,在點D的運動過程中,連接CD,當△ACD為等腰三角形時,直接寫出AD的長度.
【答案】(1);(2);(3)當△ACD為等腰三角形時,AD的長度為:15或18或.
【解析】
(1)由勾股定理求出BC的長度,再由面積法求出CD的長度即可;
(2)連接AE,可證明△ACE≌△ADE,得到CE=DE,設(shè)CE=DE=x,則BE=,由BD=10,則利用勾股定理,求出x,即可得到CE的長度;
(3)當△ACD為等腰三角形時,可分為三種情況進行①AD=AC;②AC=CD;③AD=CD;對三種情況進行計算,即可得到AD的長度.
解:(1)如圖,
在Rt△ABC中,∠ACB=90°,AC=15,AB=25,
∴BC=,
∴,
∴,
解得:;
(2)如圖,連接AE,
∵DE⊥AB,
∴∠ADE=∠C=90°,
在Rt△ADE和Rt△ACE中,
,
∴Rt△ADE≌Rt△ACE,
∴DE=CE;
設(shè)DE=CE=x,則BE=,又BD=
在Rt△BDE中,由勾股定理,得
,
解得:,
∴;
(3)在Rt△ABC中,有AB=25,AC=15,BC=20,點C到AB的距離為12;
當△ACD為等腰三角形時,可分為三種情況:
①當AD=AC時,AD=15;
②當AC=CD時,如圖,作CE⊥AB于點E,則,
∵CE=12,由勾股定理,得
,
∴;
③當AD=CD時,如圖,
在Rt△ABC中,∠ACB=90°,
當點D是AB中點時,有AD=BD=CD,
∴;
綜合上述,當△ACD為等腰三角形時,AD的長度為:15或18或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點、在反比例函數(shù)的圖象上,且點、的橫坐標分別為,.過點作軸,垂足為,且的面積為.
求該反比例函數(shù)的解析式;
若,設(shè)直線的解析式為,當滿足什么條件,?
求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,把圓形井蓋卡在角尺〔角的兩邊互相垂直,一邊有刻度)之間,即圓與兩條直角邊相切,現(xiàn)將角尺向右平移10cm,如圖2,OA邊與圓的兩個交點對應(yīng)CD的長為40cm則可知井蓋的直徑是( )
A. 25cm B. 30cm C. 50cm D. 60cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC三個頂點的坐標分別為A(-4,-1),B(-5,-4),C(-1,-3).
(1)畫△A'B'C',使△A'B'C'與△ABC關(guān)于y軸對稱;
(2)在y軸上作一點P,使得PA+PC最短;
(3)將△ABC向右平移m個單位,向上平移n個單位,若點A落在第二象限內(nèi),且點C在第四象限內(nèi),則m的范圍是 ,n的范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(提出問題)課間,一位同學(xué)拿著方格本遇人便問:“如圖所示,在邊長為1的小正方形組成的網(wǎng)格中,點A、B、C都是格點,如何證明點A、B、C在同一直線上呢?”
(分析問題)一時間,大家議論開了. 同學(xué)甲說:“可以利用代數(shù)方法,建立平面直角坐標系,利用函數(shù)的知識解決”,同學(xué)乙說:“也可以利用幾何方法…”同學(xué)丙說:“我還有其他的幾何證法”……
(解決問題)請你用兩種方法解決問題
方法一(用代數(shù)方法):
方法二(用幾何方法):
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AC為直徑,弦BD=BA,BE⊥DC交DC的延長線于點E,求證:
(1)∠1=∠BAD;
(2)BE是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】規(guī)定:在平面直角坐標系中,將一個圖形先關(guān)于y軸對稱,再向下平移2個單位記為1次“R變換”.如圖,已知△ABC的三個頂點均在格點上,其中點B的坐標為(1,2).
(1)畫出△ABC經(jīng)過1次“R變換”后的圖形△A1B1C1;
(2)若△ABC經(jīng)過3次“R變換”后的圖形為△A3B3C3,則頂點A3坐標為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中, 是的軸對稱圖形,點E在AD上,點F在AC的延長線上若點B恰好在EF的垂直平分線上,并且,,則______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2008年5月12日,四川省發(fā)生8.0級地震,某市派出兩個搶險救災(zāi)工程隊趕到汶川支援,甲工程隊承擔(dān)了2400米道路搶修任務(wù),乙工程隊比甲工程隊多承擔(dān)了600米的道路搶修任務(wù),甲工程隊施工速度比乙工程隊每小時少修40米,結(jié)果兩工程隊同時完成任務(wù).
問甲、乙兩工程隊每小時各搶修道路多少米.
(1)設(shè)乙工程隊每小時搶修道路x米,則用含x的式子表示:甲工程隊每小時搶修道路 米,甲工程隊完成承擔(dān)的搶修任務(wù)所需時間為 小時,乙工程隊完成承擔(dān)的搶修任務(wù)所需時間為 小時.
(2)列出方程,完成本題解答.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com