【題目】如圖,在⊙O中,半徑OAOB,過OA的中點CFDOB交⊙OD、F兩點,且CD,以O為圓心,OC為半徑作,交OBE點.則圖中陰影部分的面積為______________

【答案】

【解析】分析:(1)首先證明OADF,由垂徑定理求出CD=,由OD=2CO推出∠CDO=30°,設(shè)OC=x,則OD=2x,利用勾股定理求得OD的長,再根據(jù)S=SCDO+S扇形OBD-S扇形OCE計算即可.

詳解:連接OD,

OAOB

∴∠AOB=90°,

CDOB,

∴∠OCD=90°

OADF,

CD=DF=,

RtOCD中,∵CAO中點,

OA=OD=2CO,

設(shè)OC=x

x2+()2=(2x)2

解得:x=1,

OA=OD=2,

OC=OD,OCD=90°,

∴∠CDO=30°

FDOB,

∴∠DOB=ODC=30°

S=SCDO+S扇形OBDS扇形OCE=×1×+=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】勾股定理是人類最偉大的十個科學(xué)發(fā)現(xiàn)之一,西方國家稱之為畢達哥拉斯定理,但遠在畢達哥拉斯出生之前,這一定理早已被人們所利用,世界上各個文明古國都對勾股定理的發(fā)現(xiàn)和研究作出過貢獻(希臘、中國、埃及、巴比倫、印度等),特別是定理的證明,據(jù)說有400余種方法.其中在《幾何原本》中有一種證明勾股定理的方法:如圖所示,作CG⊥FH,垂足為G,交AB于點P,延長FA交DE于點S,然后將正方形ACED、正方形BCNM作等面積變形,得S正方形ACED=SACQS,S正方形BCNM=SBCQT,這樣就可以完成勾股定理的證明.對于該證明過程,下列結(jié)論錯誤的是( 。

A. △ADS≌△ACB B. SACQS=S矩形APGF

C. SCBTQ=S矩形PBHG D. SE=BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,AB=4,點EBC上一點,且tan∠BAE=,點FCD的中點,連接AE、BF△ABE著點E按順時針方向旋轉(zhuǎn),使點B落在BF上的B1處位置處,點A經(jīng)過旋轉(zhuǎn)落在A1點位置處,連接AA1BF于點N.

(1)求證:∠BFC=∠A1 B1F;

(2)說明點NAA1的中點;

(3)求AN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從邊長為a的正方形中剪掉一個邊長為b的正方形(如圖1),然后將剩余部分拼成一個長方形(如圖2).

(1)探究:上述操作能驗證的等式是 ;(請選擇正確的一個)

A.a(chǎn)2-2ab+b2=(a-b)2 B.a(chǎn)2-b2=(a+b)(a-b)

C.a(chǎn)2+ab=a(a+b)

(2)應(yīng)用:利用你從(1)選出的等式,完成下列各題:

①已知9x2-4y2=24,3x+2y=6,求3x-2y的值;

②計算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為直徑,AB=4,C、D為圓上兩個動點,NCD中點,CMABM,當(dāng)CD在圓上運動時保持∠CMN=30°,則CD的長( 

A. CD的運動位置而變化,且最大值為4 B. C、D的運動位置而變化,且最小值為2

C. C、D的運動位置長度保持不變,等于2 D. C、D的運動位置而變化,沒有最值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(),在四邊形中,,,,,分別是上的點,且.探究圖中線段,之間的數(shù)量關(guān)系.小王同學(xué)探究此問題的方法是,延長到點,使,連接,先證明,再證明,可得出結(jié)論,他的結(jié)論應(yīng)該是__________

如圖(),若在四邊形中,,,,分別是,上的點,且,上述結(jié)論是否仍然成立,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一張足夠大的紙板上截取一個面積為3600平方厘米的矩形紙板ABCD,如圖1,再在矩形紙板的四個角上切去邊長相等的小正方形,再把它的邊沿虛線折起,做成一個無蓋的長方體紙盒,底面為矩形EFGH,如圖2.設(shè)小正方形的邊長為x厘米.

(1)當(dāng)矩形紙板ABCD的一邊長為90厘米時,求紙盒的側(cè)面積的最大值;

(2)當(dāng)EHEF=7:2,且側(cè)面積與底面積之比為9:7時,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲騎自行年,乙乘坐汽車從A地出發(fā)沿同一路線勻速前往B地,甲先出發(fā).設(shè)甲行駛的時間為x(h),甲、乙兩人距出發(fā)點的路程S(km)、S(km)關(guān)于x的函數(shù)圖象如圖1所示,甲、乙兩人之同的距離y(km)關(guān)于x的函數(shù)圖象如圖2所示,請你解決以下問題:

(1)甲的速度是__________km/h,乙的速度是_______km/h;

(2)a=_______b=_______;

(3)甲出發(fā)多少時間后,甲、乙兩人第二次相距7.5km

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC中,∠B=90°,AB=16cmBC=12cm,P、QABC邊上的兩個動點,其中點P從點A開始沿A→B方向運動,且速度為每秒1cm,點Q從點B開始沿B→C→A方向運動,且速度為每秒2cm,它們同時出發(fā),設(shè)出發(fā)的時間為t秒.

1)出發(fā)2秒后,求PQ的長.

2)當(dāng)點Q在邊BC上運動時,出發(fā)幾秒鐘后,PQB能形成等腰三角形?

3)當(dāng)點Q在邊CA上運動時,求能使BCQ成為等腰三角形的運動時間.

查看答案和解析>>

同步練習(xí)冊答案