【題目】拋物線y=x2﹣3mx+2m+1與x軸正半軸交于A,B兩點(A在B的左側),與y軸正半軸交于點C,且OA=OC.
(1)拋物線的解析式為 (直接寫出結果);
(2)如圖1,D為y軸上一點,過點D的直線y=x+n交拋物線于E,F,若EF=5,求點D的坐標;
(3)將△AOC繞平面內某點逆時針旋轉90°至△A'O'C'(點A,C,O的對應點分別為A',C',O'),若旋轉后的△A'O'C'恰好有一邊的兩個端點落在拋物線上,請求出點A'的坐標.
【答案】(1)y=x2﹣x+2;(2)點D的坐標為:(0,);(3) 點A′的坐標為:(6,2)或(4,2).
【解析】
(1)點C(0,2m+1),OA=OC,則點A(2m+1),將點A的坐標代入拋物線的表達式,即可求解;
(2)聯(lián)立①與直線EF的表達式并整理得:x2﹣8x+8﹣4n=0,則a+b=8,ab=8﹣4n,設直線EF的傾斜角為α,則tan,則cosα=,則b﹣a==2,即可求解;
(3)分A′C′在拋物線上、O′C′在拋物線上兩種情況,分別求解即可.
解:(1)點C(0,2m+1),OA=OC,則點A(2m+1,0)
將點A的坐標代入拋物線的表達式并解得:m=,
故拋物線的表達式為:y=(x2﹣6x+8)=x2﹣x+2…①,
故答案為:y=x2﹣x+2;
(2)由拋物線的表達式知,點A、C的坐標分別為:(2,0)、(0,2),
則點D(0,n),設點E、F的縱坐標為:a,b,
聯(lián)立①與直線EF的表達式并整理得:x2﹣8x+8﹣4n=0,
則a+b=8,ab=8﹣4n,
設直線EF的傾斜角為α,則tan,則cosα=,
則b﹣a==2,
(b﹣a)2=(a+b)2﹣4ab=64﹣4(8﹣4n)=(2)2,解得:n=,
故點D的坐標為:(0,);
(3)將△AOC繞平面內某點逆時針旋轉90°至△A'O'C'(點A,C,O的對應點分別為A',C',O'),
若旋轉后的△A'O'C'恰好有一邊的兩個端點落在拋物線上,如圖所示,
①當A′C′在拋物線上時(左側圖),
設點A′(x,y),則點C′(x﹣2,y﹣2),
將點A′、C′的坐標代入拋物線表達式得:
y=(x2﹣6x+8),y﹣2= [(x﹣2)2﹣6(x﹣2)+8)],
解得:x=6,y=2,故點A′(6,2);
①當O′C′在拋物線上時(右側圖),A與C’重合,
由圖象及旋轉可得:OC=AB=2,OA=A’B=2
∴點A′(4,2);
綜上,點A′的坐標為:(6,2)或(4,2).
科目:初中數(shù)學 來源: 題型:
【題目】△ABC 在平面直角坐標系中的位置如圖所示,其中每 個小正方形的邊長為 1 個單位長度.
(1)畫出△ABC 關于原點 O 的中心對稱圖形△A1B1C1,并寫出點 A1 的坐標;
(2)將△ABC 繞點 C 順時針旋轉 90°得到△A2B2C,畫出△A2B2C,求在旋轉過程中,點 A 所經(jīng)過的路徑長
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,∠A=30°,點D是AB的中點,DE⊥BC,垂足為點E,連接CD.
(1)如圖1,DE與BC的數(shù)量關系是 ;
(2)如圖2,若P是線段CB上一動點(點P不與點B、C重合),連接DP,將線段DP繞點D逆時針旋轉60°,得到線段DF,連接BF,請猜想DE、BF、BP三者之間的數(shù)量關系,并證明你的結論;
(3)若點P是線段CB延長線上一動點,按照(2)中的作法,請在圖3中補全圖形,并直接寫出DE、BF、BP三者之間的數(shù)量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)有甲、乙、丙三人組成的籃球訓練小組,他們三人之間進行互相傳球練習,籃球從一個人手中隨機傳到另外一個人手中計作傳球一次,共連續(xù)傳球三次.
(1)若開始時籃球在甲手中,則經(jīng)過第一次傳球后,籃球落在丙的手中的概率是 ;
(2)若開始時籃球在甲手中,求經(jīng)過連續(xù)三次傳球后,籃球傳到乙的手中的概率.(請用畫樹狀圖或列表等方法求解)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=120°,點D為AB邊上一點(不與點B重合),連接CD,將線段CD繞點D逆時針旋轉90°,點C的對應點為E,連接BE.若AB=2,則△BDE面積的最大值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們知道,解一元二次方程,可以把它轉化為兩個一元一次方程來解,其實用“轉化”的數(shù)學思想我們還可以解一些新的方程例如一元三次方程x3+x2﹣2x=0,可以通過因式分解把它轉化為x(x2+x﹣2)=0,通過解方程x=0和x2+x﹣2=0,可得方程x3+x2﹣2x=0的解.
(1)方程x3+x2﹣2x=0的解是x1=0,x2= ,x3= .
(2)用“轉化”的思想求方程=x的解.
(3)試直接寫出的解 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的方程kx2﹣3x+1=0有實數(shù)根.
(1)求k的取值范圍;
(2)若該方程有兩個實數(shù)根,分別為x1和x2,當x1+x2+x1x2=4時,求k的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與x軸交于A(﹣1,0),B(3,0)兩點,與y軸交于點C(0,3).
(1)求此拋物線所對應函數(shù)的表達式;
(2)若M 是拋物線對稱軸上一個動點,求當 MA+MC 的值最小時 M 點坐標;
(3)若拋物線的頂點為D,在其對稱軸右側的拋物線上是否存在點P,使得△PCD為等腰三角形?若存在,求出符合條件的點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在四邊形中,,,,,垂直平分.點從點出發(fā),沿方向勻速運動,速度為;同時,點從點出發(fā),沿方向勻速運動,速度為;當一個點停止運動,另一個點也停止運動.過點作,交于點,過點作,分別交,于點,.連接,.設運動時間為,解答下列問題:
(1)當為何值時,點在的平分線上?
(2)設四邊形的面積為,求與的函數(shù)關系式.
(3)連接,,在運動過程中,是否存在某一時刻,使?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com