【題目】在⊙O中,直徑AB=6,BC是弦,∠ABC=30°,點P在BC上,點Q在⊙O上,且OP⊥PQ.
(1)如圖1,當(dāng)PQ∥AB時,求PQ的長度;
(2)如圖2,當(dāng)點P在BC上移動時,求PQ長的最大值.
【答案】(1);(2).
【解析】試題分析:(1)在Rt△OPB中,由OP=OB·tan∠ABC可求得OP=,連接OQ,在Rt△OPQ中,根據(jù)勾股定理可得PQ的長;(2)由勾股定理可知OQ為定值,所以當(dāng)當(dāng)OP最小時,PQ最大.根據(jù)垂線段最短可知,當(dāng)OP⊥BC時OP最小,所以在Rt△OPB中,由OP=OB·sin∠ABC求得OP的長;在Rt△OPQ中,根據(jù)勾股定理求得PQ的長.
試題解析:解:(1)∵OP⊥PQ,PQ∥AB,∴OP⊥AB.
在Rt△OPB中,OP=OB·tan∠ABC=3·tan30°=.
連接OQ,在Rt△OPQ中, .
(2) ∵
∴當(dāng)OP最小時,PQ最大,此時OP⊥BC.
OP=OB·sin∠ABC=3·sin30°=.
∴PQ長的最大值為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在綜合實踐課上,小聰所在小組要測量一條河的寬度,如圖,河岸EF∥MN,小聰在河岸MN上點A處用測傾器測得河對岸小樹C位于東北方向,然后沿河岸走了30米,到達(dá)B處,測得河對岸電線桿D位于北偏東30°方向,此時,其他同學(xué)測得CD=10米.則河的寬度為________米(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=6,點D在邊AC上,AD的中垂線交BC于點E.若∠AED=∠B,CE=3BE,則CD等于( 。
A. B. 2C. D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是弧AB的中點,⊙O的切線BD交AC的延長線于點D,E是OB的中點,CE的延長線交切線DB于點F,AF交⊙O于點H,連結(jié)BH.
(1)求證:AC=CD;
(2)若OB=2,求BH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AD平行BC,∠ABC=90°,AD=2,AB=6,以AB為直徑的半⊙O 切CD于點E,F(xiàn)為弧BE上一動點,過F點的直線MN為半⊙O的切線,MN交BC于M,交CD于N,則△MCN的周長為( )
A.9 B.10 C.3 D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是⊙O的內(nèi)接三角形,AB=AC,∠ABC的平分線BE交⊙O于點E,∠ACB的平分線CF交⊙O于點F,BE和CF相交于點D,四邊形AFDE是菱形嗎?請證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知A(0,a),B(b,0),C(b,c)三點,其中a,b,c滿足關(guān)系式.
(1)求a,b,c的值;
(2)如果在第二象限內(nèi)有一點P(m,),使四邊形ABOP的面積與三角形ABC的面積相等?若存在,求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知中,點是延長線上的一點,過點作,平分,平分,與交于點.
(1)如圖1,若,,直接求出的度數(shù):__________;
(2)如圖2,若,試判斷與的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)如圖3,若,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD,BC于點E,F(xiàn),垂足為點O.
(1)連接AF,CE,求證:四邊形AFCE為菱形;
(2)求菱形AFCE的邊長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com