【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,E為AC邊的中點,過點A作AD⊥AB交BE的延長線于點D,CG平分∠ACB交BD于點G.F為AB邊上一點,連接CF,且∠ACF=∠CBG.
(1)求證:BG=CF;
(2)求證:CF=2DE;
(3)若DE=1,求AD的長
【答案】(1)詳見解析;(2)詳見解析;(3)
【解析】
(1)利用“ASA”判斷△BCG≌△CFA,從而得到BG=CF;
(2)連結(jié)AG,利用等腰直角三角形的性質(zhì)得CG垂直平分AB,則BG=AG,再證明∠D=∠GAD得到AG=DG,所以BG=DG,接著證明△ADE≌△CGE得到DE=GE,則BG=2DE,利用利用△BCG≌△CFA得到CF=BG,于是有CF=2DE;
(3)先得到BG=2,GE=1,則BE=3,設(shè)CE=x,則BC=AC=2CE=2x,在Rt△BCE中利用勾股定理得到x +(2x)=3,解得x= ,所以BC=,AB= BC=,然后在Rt△ABD中利用勾股定理計算AD的長.
(1)證明:∵∠ACB=90°,AC=BC,
∴△ACB為等腰直角三角形,
∴∠CAF=∠ACG=45°,
∵CG平分∠ACB,
∴∠BCG=45°,
在△BCG和△CFA中
,
∴△BCG≌△CFA,
∴BG=CF;
(2)證明:連結(jié)AG,
∵CG為等腰直角三角形ACB的頂角的平分線,
∴CG垂直平分AB,
∴BG=AG,
∴∠GBA=∠GAB,
∵AD⊥AB,
∴∠D+∠DBA=90°,∠GAD+∠GAB=90°,
∴∠D=∠GAD,
∴AG=DG,
∴BG=DG,
∵CG⊥AB,DA⊥AB,
∴CG∥AD,
∴∠DAE=∠GCE,
∵E為AC邊的中點,
∴AE=CE,
在△ADE和△CGE中
,
∴△ADE≌△CGE,
∴DE=GE,
∴DG=2DE,
∴BG=2DE,
∵△BCG≌△CFA,
∴CF=BG,
∴CF=2DE;
(3)∵DE=1,
∴BG=2,GE=1,即BE=3,
設(shè)CE=x,則BC=AC=2CE=2x,
在Rt△BCE中,x+(2x) =3,解得x=,
∴BC=,
∴AB= BC=,
在Rt△ABD中,∵BD=4,AB= ,
∴AD=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC為直角三角形,∠C=90°,BC=2cm,∠A=30°,四邊形DEFG為矩形,DE=2cm,EF=6cm,且點C、B、E、F在同一條直線上,點B與點E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的邊EF向右平移,當(dāng)點C與點F重合時停止.設(shè)Rt△ABC與矩形DEFG的重疊部分的面積為ycm2,運動時間xs.能反映ycm2與xs之間函數(shù)關(guān)系的大致圖象是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果∠α和∠β互補,且∠α>∠β,則下列表示∠β的余角的式子中:①90°﹣∠β;②∠α﹣90°③(∠α+∠β);④(∠α﹣∠β).正確的有( 。
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c(a>0)與x軸相交于點A(﹣1,0)和點B,與y軸交于點C,對稱軸為直線x=1.
(1)求點C的坐標(biāo)(用含a的代數(shù)式表示);
(2)聯(lián)結(jié)AC、BC,若△ABC的面積為6,求此拋物線的表達(dá)式;
(3)在第(2)小題的條件下,點Q為x軸正半軸上一點,點G與點C,點F與點A關(guān)于點Q成中心對稱,當(dāng)△CGF為直角三角形時,求點Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1∥l2,⊙O與l1和l2分別相切于點A和點B,點M和點N分別是l1和l2上的動點,MN沿l1和l2平移,若⊙O的半徑為1,∠1=60°,下列結(jié)論錯誤的是( 。
A. MN= B. 若MN與⊙O相切,則AM=
C. l1和l2的距離為2 D. 若∠MON=90°,則MN與⊙O相切
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個幾何體是由若干個棱長為3cm的小正方體搭成的,從左面、上面看到的幾何體的形狀圖如圖所示:
(1)該幾何體最少由 個小立方體組成,最多由 個小立方體組成.
(2)將該幾何體的形狀固定好,
①求該幾何體體積的最大值;
②若要給體積最小時的幾何體表面涂上油漆,求所涂油漆面積的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,連接,將繞點旋轉(zhuǎn),當(dāng)(即)與交于一點,(即)與交于一點時,給出以下結(jié)論:①;②;③;④的周長的最小值是.其中正確的是( )
A. ①②③B. ①②④C. ②③④D. ①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小穎和小紅兩位同學(xué)在做投擲骰子(質(zhì)地均勻的正方體)實驗,他們共做了次實驗,實驗的結(jié)果如下:
朝上的點數(shù) | ||||||
出現(xiàn)的次數(shù) |
(1)計算“點朝上”的頻率和“點朝上”的頻率.
(2)小穎說:“根據(jù)實驗得出,出現(xiàn)點朝上的機會最大”;小紅說:“如投擲次,那么出現(xiàn) 點朝上的次數(shù)正好是次.”小穎和小紅的說法正確嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】指居民消費價格指數(shù),反映居民家庭購買消費商品及服務(wù)的價格水平的變動情況. 的漲跌率在一定程度受到季節(jié)性因素和天氣因素的影響.根據(jù)北京市年與年漲跌率的統(tǒng)計圖中的信息,請判斷年~月份與年~月份,同月份比較漲跌率下降最多的月份是__________月;請根據(jù)圖中提供的信息,預(yù)估北京市年第四季度漲跌率變化趨勢是__________,你的預(yù)估理由是__________;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com