【題目】如圖,在平面直角坐標系中,⊙P的圓心坐標是(4,a)(a>4),半徑為4,函數(shù)y=x的圖象被⊙P截得的弦AB的長為2,則a的值是_____.
科目:初中數(shù)學 來源: 題型:
【題目】用一刻度尺檢驗一個四邊形是否為矩形,以下方法可行的有________.(只要填序號即可)
①量出四邊及兩條對角線,比較對邊是否相等,對角線是否相等.
②量出對角線的交點到四個頂點的距離,看是否相等.
③量出一組鄰邊的長、以及和這兩邊組成三角形的那條對角線的長,計算是否有.
④量出兩條對角線長,看是否相等.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,∠A=30°.
(1)用尺規(guī)作圖作AB邊上的中垂線DE,交AC于點D,交AB于點E.(保留作圖痕跡,不要求寫作法和證明);
(2)連接BD,求證:BD平分∠CBA.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC中,∠A=40°,若點O是△ABC的外心,則∠BOC=_____°;若點I是△ABC的內(nèi)心,則∠BIC=_____°.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)(學習心得)
小剛同學在學習完“圓”這一章內(nèi)容后,感覺到一些幾何問題,如果添加輔助圓,運用圓的知識解決,可以使問題變得非常容易.
例如:如圖1,在△ABC中,AB=AC,∠BAC=90°,D是△ABC外一點,且AD=AC,求∠BDC的度數(shù),若以點A為圓心,AB為半徑作輔助圓⊙A,則點C、D必在⊙A上,∠BAC是⊙A的圓心角,而∠BDC是圓周角,從而可容易得到∠BDC= °.
(2)(問題解決)
如圖2,在四邊形ABCD中,∠BAD=∠BCD=90°,∠BDC=25°,求∠BAC的度數(shù).
小剛同學認為用添加輔助圓的方法,可以使問題快速解決,他是這樣思考的:△ABD的外接圓就是以BD的中點為圓心,BD長為半徑的圓;△ACD的外接圓也是以BD的中點為圓心,BD長為半徑的圓.這樣A、B、C、D四點在同一個圓上,進而可以利用圓周角的性質求出∠BAC的度數(shù),請運用小剛的思路解決這個問題.
(3)(問題拓展)
如圖3,在△ABC中,∠BAC=45°,AD是BC邊上的高,且BD=4,CD=2,求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算
(1)4a2b(2b2-1)
(2)(x-2y)(y+2x)
(3)(6m2n-3m2)÷(-3m2)
(4)2019×2017-20182(用簡便方法計算)
(5)先化簡,再求值:;其中
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“上升數(shù)”是一個數(shù)中右邊數(shù)字比左邊數(shù)字大的自然數(shù)(如:34,568,2469等).任取一個兩位數(shù),是“上升數(shù)”的概率是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx過點B(1,﹣3),對稱軸是直線x=2,且拋物線與x軸的正半軸交于點A.
(1)求拋物線的解析式,并根據(jù)圖象直接寫出當y≤0時,自變量x的取值范圖;
(2)在第二象限內(nèi)的拋物線上有一點P,當PA⊥BA時,求△PAB的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com