【題目】在△ABC中,點(diǎn)D、E分別在AB、AC上,且CD于BE相交于點(diǎn)F,已知△BDF的面積為12,△BCF的面積為16,△CEF的面積為12,則四邊形ADFE的面積為

【答案】72
【解析】解:如圖,連AF,設(shè)SADF=m,
∵SBDF:SBCF=12:16=3:4=DF:CF,
則有 m=SAEF+SEFC ,
SAEF= m﹣12,
而SBFC:SEFC=16:12=4:3=BF:EF,
又∵SABF:SAEF=BF:EF=4:3,
而SABF=m+SBDF=m+12,
∴SABF:SAEF=BF:EF=4:3=(m+12):( m﹣12),
解得m=36.
SAEF=36,
SADEF=SAEF+SADF=36+36=72.
所以答案是:72.
【考點(diǎn)精析】通過靈活運(yùn)用三角形的面積,掌握三角形的面積=1/2×底×高即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形紙片ABCD中,AB=3cm,AD=5cm,折疊紙片使B點(diǎn)落在邊AD上的E處,折痕為PQ,過點(diǎn)E作EF∥AB交PQ于F,連接BF.

(1)求證:四邊形BFEP為菱形;
(2)當(dāng)點(diǎn)E在AD邊上移動(dòng)時(shí),折痕的端點(diǎn)P、Q也隨之移動(dòng);
①當(dāng)點(diǎn)Q與點(diǎn)C重合時(shí)(如圖2),求菱形BFEP的邊長;

②若限定P、Q分別在邊BA、BC上移動(dòng),求出點(diǎn)E在邊AD上移動(dòng)的最大距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛貨車從永福超市出發(fā)負(fù)責(zé)送貨,向東走了5千米到達(dá)小明家,繼續(xù)向東走了1.5千米到達(dá)小紅家,然后向西走了9.5千米到達(dá)小剛家,最后返回永福超市.

(1)以永福超市為原點(diǎn),向東為正方向,1個(gè)單位長度表示1千米,請你在數(shù)軸上標(biāo)出小明、小紅、小剛家的位置.

(2)小明家與小剛家相距多遠(yuǎn)?

(3)若貨車每千米耗油0.6升,那么這輛貨車此次送貨共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,B、C、E三點(diǎn)在同一條直線上,ACDE,AC=CE,ACD=B.

(1)求證:BC=DE

(2)若∠A=40°,求∠BCD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:如圖1,在平面直角坐標(biāo)系中,A、B兩點(diǎn)的坐標(biāo)分別為A(x1 , y1),B(x2 , y2),AB中點(diǎn)P的坐標(biāo)為(xp , yp).由xp﹣x1=x2﹣xp , 得xp= ,同理yp= ,所以AB的中點(diǎn)坐標(biāo)為( , ).由勾股定理得AB2=|x2﹣x1|2+|y2﹣y1|2 , 所以A、B兩點(diǎn)間的距離公式為AB= .這兩公式對A、B在平面直角坐標(biāo)系中其它位置也成立.解答下列問題:

(1)已知M(1,﹣2),N(﹣1,2),直接利用公式填空:MN中點(diǎn)坐標(biāo)為 , MN=
(2)如圖2,直線l:y=2x+2與拋物線y=2x2交于A、B兩點(diǎn),P為AB的中點(diǎn),過P作x軸的垂線交拋物線于點(diǎn)C.

(a)求A、B兩點(diǎn)的坐標(biāo)及C點(diǎn)的坐標(biāo);
(b)連結(jié)AB、AC,求證△ABC為直角三角形;
(c)將直線l平移到C點(diǎn)時(shí)得到直線l′,求兩直線l與l′的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=x+4的圖象與反比例函數(shù)y= (k為常數(shù),且k≠0)的圖象交于A(﹣1,a),B(b,1)兩點(diǎn).

(1)求反比例函數(shù)的表達(dá)式;
(2)在x軸上找一點(diǎn)P,使PA+PB的值最小,求滿足條件的點(diǎn)P的坐標(biāo);
(3)求△PAB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,若兩條平行線EF,MN與直線AB,CD相交,則圖中共有同旁內(nèi)角的對數(shù)為( )

A. 4 B. 8 C. 12 D. 16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y=kx﹣1的圖象經(jīng)過點(diǎn)P,且y的值隨x值的增大而增大,則點(diǎn)P的坐標(biāo)可以為(  )

A. (﹣5,3) B. (1,﹣3) C. (2,2) D. (5,﹣1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度y(米)與登山時(shí)間x(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:
(1)甲登山上升的速度是每分鐘米,乙在A地時(shí)距地面的高度b為米.
(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請求出乙登山全程中,距地面的高度y(米)與登山時(shí)間x(分)之間的函數(shù)關(guān)系式.
(3)登山多長時(shí)間時(shí),甲、乙兩人距地面的高度差為50米?

查看答案和解析>>

同步練習(xí)冊答案