【題目】已知△ABC為等邊三角形,E為射線BA上一點(diǎn),D為直線BC上一點(diǎn),ED.=EC.
(1)當(dāng)點(diǎn)E在AB的上,點(diǎn)D在CB的延長(zhǎng)線上時(shí)(如圖1),求證:AE+AC=CD;
(2)當(dāng)點(diǎn)E在BA的延長(zhǎng)線上,點(diǎn)D在BC上時(shí)(如圖2),請(qǐng)寫(xiě)出AE,AC和CD之間的數(shù)量關(guān)系,不需要證明;
(3)當(dāng)點(diǎn)E在BA的延長(zhǎng)線上,點(diǎn)D在BC的延長(zhǎng)線上時(shí)(如圖3),請(qǐng)寫(xiě)出AE、AC和CD的數(shù)量關(guān)系,不需要證明;
(4)在(1)和(2)的條件下,若AE=2,CD=6,則AC= 。
【答案】(1)詳見(jiàn)解析;(2)圖②:AC=AE +CD;(3)圖③:AE=AC+ CD;(4)4或8.
【解析】
(1)如圖①,在CD上截取CF=AE,連接EF.運(yùn)用“AAS”證明△ECF≌△EDB,得CF=BD ,進(jìn)而得出AE=BD,由CD=BC+BD,BC=AC,即可證得答案;
(2)如圖②,在BC的延長(zhǎng)線上截取CF=AE,連接EF.同理可得AE、AC和CD的數(shù)量關(guān)系;
(3)如圖③同(2)的探究過(guò)程,可得AE、AC和CD的數(shù)量關(guān)系;
(4)在(1)和(2)的條件下,把AE=2,CD=6分別代入AC=AE +CD和AE+AC=CD中,即可得出AC的值.
(1)證明:在CD上截取CF=AE,連接EF.
∵△ABC是等邊三角形,
∴∠ABC=60°,AB=BC.
∴BF=BE,△BEF為等邊三角形.
∴∠EBD=∠EFC=120°.
又∵ED=EC,
∴∠D=∠ECF.
∴△EDB≌△ECF(AAS)
∴CF=BD.
∴AE=BD.
∵CD=BC+BD,BC=AC,
∴AE+AC=CD;
(2)圖②:AC=AE +CD.
(3)圖③:AE=AC+ CD.
(4)把AE=2,CD=6代入AC=AE +CD中得:;
把AE=2,CD=6代入AE+AC=CD中得:.
∴或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,以AB中點(diǎn)E為圓心,EA為半徑畫(huà)弧交CD于點(diǎn)F,點(diǎn)F恰好為CD中點(diǎn),若∠B=60°,BC=2,則圖中陰影部分的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了提高學(xué)生書(shū)寫(xiě)漢字的能力,增強(qiáng)保護(hù)漢字的意識(shí),我市舉辦了首屆“漢字聽(tīng)寫(xiě)大賽”,經(jīng)選拔后有50名學(xué)生參加決賽,這50名學(xué)生同時(shí)聽(tīng)寫(xiě)50個(gè)漢字,若每正確聽(tīng)寫(xiě)出一個(gè)漢字得1分,根據(jù)測(cè)試成績(jī)繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如圖表:
組別 | 成績(jī)x分 | 頻數(shù)(人數(shù)) |
第1組 | 25≤x<30 | 4 |
第2組 | 30≤x<35 | 8 |
第3組 | 35≤x<40 | 16 |
第4組 | 40≤x<45 | a |
第5組 | 45≤x<50 | 10 |
請(qǐng)結(jié)合圖表完成下列各題:
(1)求表中a的值;
(2)請(qǐng)把頻數(shù)分布直方圖補(bǔ)充完整;
(3)若測(cè)試成績(jī)不低于40分為優(yōu)秀,則本次測(cè)試的優(yōu)秀率是多少?
(4)第5組10名同學(xué)中,有4名男同學(xué),現(xiàn)將這10名同學(xué)平均分成兩組進(jìn)行對(duì)抗練習(xí),且4名男同學(xué)每組分兩人,求小宇與小強(qiáng)兩名男同學(xué)能分在同一組的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某興趣小組為了了解本校男生參加課外體育鍛煉情況,隨機(jī)抽取本校300名男生進(jìn)行了問(wèn)卷調(diào)查,統(tǒng)計(jì)整理并繪制了如下兩幅尚不完整的統(tǒng)計(jì)圖.
請(qǐng)根據(jù)以上信息解答下列問(wèn)題:
(1)課外體育鍛煉情況扇形統(tǒng)計(jì)圖中,“經(jīng)常參加”所對(duì)應(yīng)的圓心角的度數(shù)為________;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)該校共有1200名男生,請(qǐng)估計(jì)全校男生中經(jīng)常參加課外體育鍛煉并且最喜歡的項(xiàng)目是籃球的人數(shù);
(4)小明認(rèn)為“全校所有男生中,課外最喜歡參加的運(yùn)動(dòng)項(xiàng)目是乒乓球的人數(shù)約為1200×=108”,請(qǐng)你判斷這種說(shuō)法是否正確,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC和△A'B'C'關(guān)于直線l對(duì)稱(chēng),下列結(jié)論:①△ABC≌△A'B'C' ;②∠BAC=∠B'A'C';③直線l不一定垂直平分線段CC';④直線BC與B'C'的交點(diǎn)一定在直線l上.其中正確的是________ (填序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,、、、為矩形的四個(gè)頂點(diǎn),,,動(dòng)點(diǎn)、分別從點(diǎn)、同時(shí)出發(fā),點(diǎn)以的速度向點(diǎn)移動(dòng),一直到達(dá)為止,點(diǎn)以的速度向移動(dòng).
、兩點(diǎn)從出發(fā)開(kāi)始到幾秒?四邊形的面積為;
、兩點(diǎn)從出發(fā)開(kāi)始到幾秒時(shí)?點(diǎn)和點(diǎn)的距離是.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形紙片ABCD中,AB=10,AD=8,將紙片折疊,使點(diǎn)B落在CD上的B′處,折痕為AE,在折痕AE上存在一點(diǎn)P到邊CD的距離與到點(diǎn)B的距離相等,則此相等的距離為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2002年在北京召開(kāi)的世界數(shù)學(xué)大會(huì)會(huì)標(biāo)圖案是由四個(gè)全等的直角三角形圍成的一個(gè)大正方形,中間的陰影部分是一個(gè)小正方形的“趙爽弦圖”.若這四個(gè)全等的直角三角形有一個(gè)角為30°,頂點(diǎn)B1、B2、B3、…、Bn和C1、C2、C3、…、Cn分別在直線和x軸上,則第n個(gè)陰影正方形的面積為
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,對(duì)角線AC與BD交于點(diǎn)O.過(guò)點(diǎn)C作BD的平行線,過(guò)點(diǎn)D作AC的平行線,兩直線相交于點(diǎn)E.
(1)求證:四邊形OCED是矩形;
(2)若CE=1,DE=2,ABCD的面積是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com