【題目】在平面直角坐標(biāo)系中,A(a,0),C(0,c)且滿足:,長方形ABCO在坐標(biāo)系中(如圖1),點(diǎn)O為坐標(biāo)系的原點(diǎn).
(1)求點(diǎn)B的坐標(biāo).
(2)如圖2,若點(diǎn)M從點(diǎn)A出發(fā),以2個(gè)單位/秒的速度向右運(yùn)動(dòng)(不超過點(diǎn)O),點(diǎn)N從原點(diǎn)O出發(fā),以1個(gè)單位/秒的速度向下運(yùn)動(dòng)(不超過點(diǎn)C),設(shè)M、N兩點(diǎn)同時(shí)出發(fā),在它們運(yùn)動(dòng)的過程中,四邊形MBNO的面積是否發(fā)生變化?若不變,求其值;若變化,求變化的范圍.
(3)如圖3,E為x軸負(fù)半軸上一點(diǎn),且∠CBE=∠CEB,F是x軸正半軸上一動(dòng)點(diǎn),∠ECF的平分線CD交BE的延長線于點(diǎn)D,在點(diǎn)F運(yùn)動(dòng)的過程中,請(qǐng)?zhí)骄俊?/span>CFE與∠D的數(shù)量關(guān)系,并說明理由
【答案】(1)B(-6,-3);(2)四邊形MBNO的面積與t無關(guān),在運(yùn)動(dòng)過程中面積不變,為定值9;(3),理由詳見解析.
【解析】
(1)根據(jù)題意可得a=-6,c=-3,則可求A點(diǎn),C點(diǎn),B點(diǎn)坐標(biāo);
(2)設(shè)M、N同時(shí)出發(fā)的時(shí)間為t,則S四邊形MBNO=S長方形OABC-S△ABM-S△BCN=18-×2t×3-×6×(3-t)=9.與時(shí)間無關(guān).即面積是定值,其值為9;
(3)根據(jù)三角形內(nèi)角和定理和三角形外角等于不相鄰的兩個(gè)內(nèi)角的和,可求∠CFE與∠D的數(shù)量關(guān)系.
解:解:(1)∵0,
∴a=-6,c=-3
∴A(-6,0),C(0,-3)
∵四邊形OABC是長方形
∴AO∥BC,AB∥OC,AB=OC=3,AO=BC=6
∴B(-6,-3);
(2)四邊形MBNO的面積不變.
設(shè)M、N同時(shí)出發(fā)的時(shí)間為t,
S四邊形MBNO=S長方形OABC-S△ABM-S△BCN=18-×2t×3-×6×(3-t)=9,與時(shí)間無關(guān).即面積是定值,其值為9;
(3)∠CFE=2∠D.
理由如下:如圖,
∵∠CBE=∠CEB,
∴∠ECB=180°-2∠BEC,
∵CD平分∠ECF,
∴∠DCE=∠DCF,
∵AF∥BC,
∴∠CFE=180°-∠DCF-∠DCE-∠BCE=180°-2∠DCE-(180°-2∠BEC),
∴∠CFE=2∠BEC-2∠DCE,
∵∠BEC=∠D+∠DCE,
∴∠CFE=2(∠D+∠DCE)-2∠DCE,
∴∠CFE=2∠D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一堆彩球有紅、黃兩種顏色,首先數(shù)出的50個(gè)球中有49個(gè)紅球,以后每數(shù)出8個(gè)球中都有7個(gè)紅球,一直數(shù)到最后8個(gè)球,正好數(shù)完,在已經(jīng)數(shù)出的球中紅球的數(shù)目不少于90%.
(1)這堆球的數(shù)目最多有多少個(gè)?
(2)在(1)的情況下,從這堆彩球中任取兩個(gè)球,恰好為一紅一黃的概率有多大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,AC=8cm,AB=10cm,點(diǎn)P由點(diǎn)C出發(fā)以每秒2cm的速度沿CA向點(diǎn)A運(yùn)動(dòng)(不運(yùn)動(dòng)至A點(diǎn)),⊙O的圓心在BP上,且⊙O分別與AB、AC相切,當(dāng)點(diǎn)P運(yùn)動(dòng)2秒鐘時(shí),求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)中,具有過原點(diǎn),且當(dāng)x>0時(shí),y隨x增大而減小,這兩個(gè)特征的有()
①y=-ax2(a>0) ②y=(a-1)x2(a<1) ③y=-2x+a2(a≠0) ④y=x-a
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,BD⊥AC于點(diǎn)D,E為BC上一點(diǎn),過E點(diǎn)作EF⊥AC,垂足為F,過點(diǎn)D作DH∥BC交AB于點(diǎn)H.
(1)請(qǐng)你補(bǔ)全圖形。
(2)求證:∠BDH=∠CEF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=2,AD=1,點(diǎn)P在線段AB上運(yùn)動(dòng),現(xiàn)將紙片折疊,使點(diǎn)D與點(diǎn)P重合,得折痕EF(點(diǎn)E、F為折痕與矩形邊的交點(diǎn)),再將紙片還原設(shè)四邊形EPFD的面積為S,當(dāng)四邊形EPFD為菱形時(shí),請(qǐng)寫出S的取值范圍____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解七年級(jí)學(xué)生的身體素質(zhì)情況,體育老師對(duì)該年級(jí)部分學(xué)生進(jìn)行了一分鐘跳繩次數(shù)的測試,并把測試成績繪制成如圖所示的頻數(shù)表和頻數(shù)直方圖(每組含前一個(gè)邊界值,不含后一個(gè)邊界值).
(1)參加測試的學(xué)生有多少人?
(2)求,的值,并把頻數(shù)直方圖補(bǔ)充完整.
(3)若該年級(jí)共有名學(xué)生,估計(jì)該年級(jí)學(xué)生一分鐘跳繩次數(shù)不少于次的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)計(jì)算:(a-2)(a2+2a+4)= ,
(2x-y)(4x2+2xy+y2)= .
(2)上面的整式乘法計(jì)算結(jié)果很簡單,由此又發(fā)現(xiàn)一個(gè)新的乘法公式: _________________________(請(qǐng)用含a、b的字母表示)
(3)下列各式能用你發(fā)現(xiàn)的乘法公式計(jì)算的是( 。
A.(a-3)(a2-3a+9) B.(2m-n)(2m2+2mn+n2)
C.(4-x)(16+4x+x2) D.(m-n)(m2+2mn+n2)
(4)直接用公式計(jì)算: =
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)O是AC邊上(端點(diǎn)除外)的一個(gè)動(dòng)點(diǎn),過點(diǎn)O作直線MN∥BC.設(shè)MN交∠BCA的平分線于點(diǎn)E,交∠BCA的外角平分線于點(diǎn)F,連接AE、AF.
(1)求證:OE=OF;
(2)那么當(dāng)點(diǎn)O運(yùn)動(dòng)到AC的中點(diǎn)時(shí),試判斷四邊形AECF的形狀并說明理由;
(3)在(2)的前提下△ABC滿足什么條件,四邊形AECF是正方形?說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com