【題目】如圖,ABC中,C90°,AC8cm,AB10cm,點P由點C出發(fā)以每秒2cm的速度沿CA向點A運動(不運動至A點),O的圓心在BP上,且O分別與AB、AC相切,當點P運動2秒鐘時,求O的半徑.

【答案】

【解析】試題分析:設(shè)AC、AB與⊙O的切點分別為R、M,連接OR、OM,過OOK⊥BCK;由于△POR∽△PCB,可得出關(guān)于PR,OR,PC,BC的比例關(guān)系式,由此可求出PR與半徑的比例關(guān)系.由此可表示出OK,AP的長;在Rt△OBK中,已知了OK的表達式,BK=BC-r,而OB可在Rt△OBM中用勾股定理求得.由此可根據(jù)勾股定理求出半徑r的長.

試題解析:

連接OR、OM,如圖所示:


OR⊥AC,OM⊥AB;過OOK⊥BCK,
設(shè)⊙O的半徑為r,
易知:△POR∽△PBC,

,

∵BC=cm,

,PR,

AP=CP=2×2=4cm,
Rt△BOKRt△BMO中,根據(jù)勾股定理,得:

,

解得:r=cm.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖 1O 是等邊三角形 ABC 內(nèi)一點,連接 OA,OBOC,且 OA3OB4,OC5,將BAO 繞點 B 順時針旋轉(zhuǎn)后得到BCD,連接 OD

填空:旋轉(zhuǎn)角為 °;線段 OD 的長是 ;③∠BDC= °

2)如圖 2,O ABC 內(nèi)一點,且ABC90°,BA=BC 連接 OA,OB,OC,將BAO 繞點 B 順時針旋轉(zhuǎn)后得到BCD,連接 OD.當 OA,OB,OC 滿足什么條件時,BDC135°?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一個圓的半徑為6cm,這個圓的內(nèi)接正六邊形的周長和面積各是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,的平分線與的垂直平分線交于點,點沿折疊后與點重合,則的度數(shù)是__________度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場的打折活動規(guī)定:凡在本商場購物,可轉(zhuǎn)動轉(zhuǎn)盤一次,如圖,并根據(jù)所轉(zhuǎn)結(jié)果付賬.

1)分別求出打九折,打八折的概率;

2)求不打折的概率;

3)小紅和小明分別購買了價值200元的商品,活動后一共付錢360元,求他倆獲得優(yōu)惠的情況.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某電器超市銷售每臺進價分別為160元,200元的A、B兩種型號的電風扇,表中是近兩周的銷售情況:

銷售時段

銷售數(shù)量

銷售收入/

A種型號/

B種型號/

1

3

5

1800

2

4

10

3200

1A、B兩種型號的電風扇的銷售單價是多少?

2)若該超市準備用不多于5400元的金額再次采購這兩種型號的電風扇共30臺,則A種型號的電風扇最多能采購多少臺?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為2 cm,△PMN是一塊直角三角板(∠N=30°)PM2 cm,PMBC均在直線l上,開始時M點與B點重合,將三角板向右平行移動,直至M點與C點重合為止.設(shè)BM=x cm,三角板與正方形重疊部分的面積為y cm2.

下列結(jié)論:

0≤x≤時,yx之間的函數(shù)關(guān)系式為y= x2;

時,yx之間的函數(shù)關(guān)系式為y=2x-;

MN經(jīng)過AB的中點時,y= (cm2);

存在x的值,使y= S正方形ABCD(S正方形ABCD表示正方形ABCD的面積).

其中正確的是______(寫出所有正確結(jié)論的序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,Aa0),C0,c)且滿足:,長方形ABCO在坐標系中(如圖1),點O為坐標系的原點.

1)求點B的坐標.

2)如圖2,若點M從點A出發(fā),以2個單位/秒的速度向右運動(不超過點O),點N從原點O出發(fā),以1個單位/秒的速度向下運動(不超過點C),設(shè)M、N兩點同時出發(fā),在它們運動的過程中,四邊形MBNO的面積是否發(fā)生變化?若不變,求其值;若變化,求變化的范圍.

3)如圖3,Ex軸負半軸上一點,且∠CBE=∠CEBFx軸正半軸上一動點,∠ECF的平分線CDBE的延長線于點D,在點F運動的過程中,請?zhí)骄俊?/span>CFE與∠D的數(shù)量關(guān)系,并說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰直角三角形ABC,AB=BC,直角頂點B在直線PQ上,且ADPQD,CEPQE

1ADBBEC全等嗎?為什么?

2)圖1中,AD、DE、CE有怎樣的等量關(guān)系?說明理由.

3)將直線PQ繞點B旋轉(zhuǎn)到如圖2所示的位置,其他條件不變,那么ADDE、CE有怎樣的等量關(guān)系?直接寫出結(jié)果.

查看答案和解析>>

同步練習冊答案