【題目】在平面直角坐標(biāo)系 XOY中,對(duì)于任意兩點(diǎn) (,)與 (,)的“非常距離”,給出如下定義: 若 ,則點(diǎn) 與點(diǎn) 的“非常距離”為 ;若 ,則點(diǎn) 與點(diǎn)的“非常距離”為 .
例如:點(diǎn) (1,2),點(diǎn) (3,5),因?yàn)?/span> ,所以點(diǎn) 與點(diǎn) 的“非常距離”為 ,也就是圖1中線段 Q與線段 Q長(zhǎng)度的較大值(點(diǎn) Q為垂直于 y軸的直線 Q與垂直于 x軸的直線 Q的交點(diǎn))。
(1)已知點(diǎn) A(-,0), B為 y軸上的一個(gè)動(dòng)點(diǎn),①若點(diǎn) A與點(diǎn) B的“非常距離”為2,寫(xiě)出一個(gè)滿足條件的點(diǎn) B的坐標(biāo);②直接寫(xiě)出點(diǎn) A與點(diǎn) B的“非常距離”的最小值;
(2)已知 C是直線 上的一個(gè)動(dòng)點(diǎn),①如圖2,點(diǎn) D的坐標(biāo)是(0,1),求點(diǎn) C與點(diǎn) D的“非常距離”的最小值及相應(yīng)的點(diǎn) C的坐標(biāo); ②如圖3, E是以原點(diǎn) O為圓心,1為半徑的圓上的一個(gè)動(dòng)點(diǎn),求點(diǎn) C與點(diǎn) E的“非常距離”的最小值及相應(yīng)的點(diǎn) E和點(diǎn) C的坐標(biāo)。
【答案】(1)①B(0,2)或(0,﹣2);②; (2)① , C(﹣, );②點(diǎn)C的坐標(biāo)為(﹣,),E(﹣,),最小值為1.
【解析】
根據(jù)題目對(duì)“非常距離”的定義,即兩點(diǎn)間的“非常距離”是指兩點(diǎn)橫坐標(biāo)和縱坐標(biāo)差的絕對(duì)值中的較大者,根據(jù)這個(gè)定義即可解答此題.
(1)解:①∵B為y軸上的一個(gè)動(dòng)點(diǎn),
∴設(shè)點(diǎn)B的坐標(biāo)為(0,y).
∵|﹣ ﹣0|= ≠2,
∴|0﹣y|=2,
解得,y=2或y=﹣2;
∴點(diǎn)B的坐標(biāo)是(0,2)或(0,﹣2);
②點(diǎn)A與點(diǎn)B的“非常距離”的最小值為
(2)解:①如圖2,
取點(diǎn)C與點(diǎn)D的“非常距離”的最小值時(shí),需要根據(jù)運(yùn)算定義“若|x1﹣x2|≥|y1﹣y2|,則點(diǎn)P1與點(diǎn)P2的“非常距離”為|x1﹣x2|”解答,此時(shí)|x1﹣x2|=|y1﹣y2|.即AC=AD,
∵C是直線y= x+3上的一個(gè)動(dòng)點(diǎn),點(diǎn)D的坐標(biāo)是(0,1),
∴設(shè)點(diǎn)C的坐標(biāo)為(x0 , x0+3),
∴﹣x0= x0+2,
此時(shí),x0=﹣ ,
∴點(diǎn)C與點(diǎn)D的“非常距離”的最小值為:|x0|= ,
此時(shí)C(﹣ , );
②如圖3,
當(dāng)點(diǎn)E在過(guò)原點(diǎn)且與直線y= x+3垂直的直線上時(shí),點(diǎn)C與點(diǎn)E的“非常距離”最小,
設(shè)E(x,y)(點(diǎn)E位于第二象限).則
,
解得, ,
故E(﹣ , ).
﹣ ﹣x0= x0+3﹣ ,
解得,x0=﹣ ,
則點(diǎn)C的坐標(biāo)為(﹣ , ),
最小值為1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若點(diǎn)(﹣2,y1)、(﹣1,y2)和(1,y3)分別在反比例函數(shù)y=﹣的圖象上,則下列判斷中正確的是( 。
A. y1<y2<y3 B. y3<y1<y2 C. y2<y3<y1 D. y3<y2<y1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有甲乙兩名采購(gòu)員去同一家飼料公司分別購(gòu)買(mǎi)兩次飼料,兩次購(gòu)買(mǎi)飼料價(jià)格分別為m元/千克和n元/千克,且m≠n,兩名采購(gòu)員的采購(gòu)方式也不同,其中甲每次購(gòu)買(mǎi)1000千克,乙每次用去800元,而不管購(gòu)買(mǎi)多少飼料.
(1)甲、乙所購(gòu)飼料的平均單價(jià)各是多少?(用字母m、n表示)
(2)誰(shuí)的購(gòu)貨方式更合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠C=90°,BC=CD=8,過(guò)點(diǎn)B作EB⊥AB,交CD于點(diǎn)E.若DE=6,則AD的長(zhǎng)為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABDC中,∠D=∠B=90°,點(diǎn)O為BD的中點(diǎn),且AO平分∠BAC.
(1)求證:CO平分∠ACD;
(2)求證:OA⊥OC;
(3)求證:AB+CD=AC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)矩形ABCD的對(duì)角線AC的中點(diǎn)O作EF⊥AC,交BC邊于點(diǎn)E,交AD邊于點(diǎn)F,分別連接AE,CF.
(1)求證:四邊形AECF是菱形;
(2)若AB=6,AC=10,EC=,求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題:①有兩個(gè)角和第三個(gè)角的平分線對(duì)應(yīng)相等的兩個(gè)三角形全等;②有兩條邊和第三條邊上的中線對(duì)應(yīng)相等的兩個(gè)三角形全等;③有兩條邊和第三條邊上的高對(duì)應(yīng)相等的兩個(gè)三角形全等.其中正確的是( 。
A. ①② B. ②③ C. ①③ D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖7,已知平行四邊形ABCD的周長(zhǎng)是32cm,AB︰BC=5︰3,AE⊥BC,垂足為E,AF⊥CD,垂足為F,∠EAF=2∠C.
(1)求∠C的度數(shù);
(2)已知DF的長(zhǎng)是關(guān)于的方程--6=0的一個(gè)根,求該方程的另一個(gè)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在同一直角坐標(biāo)系中,二次函數(shù)y=x2-2x-3的圖象與兩坐標(biāo)軸分別交于點(diǎn)A點(diǎn) B和點(diǎn)C,一次函數(shù)的圖象與拋物線交于B、C兩點(diǎn).
(1)將這個(gè)二次函數(shù)化為的形式為 。
(2)當(dāng)自變量滿足 時(shí),兩函數(shù)的函數(shù)值都隨增大而增大。
(3)當(dāng)自變量滿足 時(shí),一次函數(shù)值大于二次函數(shù)值。
(4)當(dāng)自變量滿足 時(shí),兩個(gè)函數(shù)的函數(shù)值的積小于0。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com