【題目】如圖,是半徑為4的內(nèi)接三角形,連接,點分別是的中點.

1)試判斷四邊形的形狀,并說明理由;

2)填空:①若,當(dāng)時,四邊形的面積是__________;②若,當(dāng)的度數(shù)為__________時,四邊形是正方形.

【答案】1)四邊形是平行四邊形,見解析;(2)①6,②75°或15°.

【解析】

1)利用中位線性質(zhì),中位線平行于第三邊并且等于第三邊的一半,只要證明DG=EFDGEF即可解決問題;
2)①只要證明四邊形DEFG是矩形即可解決問題;
②分點C在優(yōu)弧AB或劣弧AB上兩種情形討論即可.

解:

⑴四邊形是平行四邊形.

∵點分別是的中點,

,

,

∴四邊形是平行四邊形;

2)①連接,

,

,

,

,同理,

,

∴四邊形是矩形,

∴四邊形的面積=,故答案為6;

②當(dāng)是優(yōu)弧的中點時,四邊形是正方形,此時

當(dāng)是劣弧的中點時,四邊形是正方形,此時,故答案為75°15°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】跳臺滑雪是冬季奧運會比賽項目之一,如圖平面直角坐標(biāo)系是跳臺滑雪的截面示意圖,運動員沿滑道下滑,在軸上的點起跳,點距落地水平面,運動員落地的雪面開始是一段曲線,到達(dá)點后變?yōu)樗矫,點軸的水平距離為.運動員(看成點)從點起跳后的水平速度為,點是下落路線的某位置.忽略空氣阻力,實驗表明:,的豎直距離與飛出時間的平方成正比,且;的水平距離是米.

1)用含的代數(shù)式表示;

2)用含的代數(shù)式表示點的橫坐標(biāo)和縱坐標(biāo),并求的關(guān)系式(不寫的取值范圍);

3)奧運組委會規(guī)定,運動員落地點距起跳點的水平距離為運動員本次跳躍的成績,并且參賽的達(dá)標(biāo)成績?yōu)?/span>.在運動員跳躍的過程中,點處有一個攝像頭,記錄運動員的空中姿態(tài),當(dāng)運動員飛過點時,在點上方可被攝像頭抓拍到.若運動員本次跳躍達(dá)到達(dá)標(biāo)成績,并且能被處攝像頭抓拍,求從點起跳后的水平速度的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,點是邊的中點,過點于點,的外接圓與邊交于點,

1)①補全圖形;②判斷直線的外接圓的公共點個數(shù),并給出證明.

2)若,,求線段的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c經(jīng)過A(1,0),C(0,3)兩點,點B是拋物線與x軸的另一個交點,點D與點C關(guān)于拋物線對稱軸對稱,作直線AD.點P在拋物線上,過點PPEx軸,垂足為點E,交直線AD于點Q,過點PPGAD,垂足為點G,連接AP.設(shè)點P的橫坐標(biāo)為mPQ的長度為d

(1)求拋物線的解析式;

(2)求點D的坐標(biāo)及直線AD的解析式;

(3)當(dāng)點P在直線AD上方時,求d關(guān)于m的函數(shù)關(guān)系式,并求出d的最大值;

(4)當(dāng)點P在直線AD上方時,若PQ將△APG分成面積相等的兩部分,直接寫出m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,經(jīng)過原點O的拋物線(a0)與x軸交于另一點A(,0),在第一象限內(nèi)與直線y=x交于點B(2,t).

(1)求這條拋物線的表達(dá)式;

(2)在第四象限內(nèi)的拋物線上有一點C,滿足以B,O,C為頂點的三角形的面積為2,求點C的坐標(biāo);

(3)如圖2,若點M在這條拋物線上,且MBO=ABO,在(2)的條件下,是否存在點P,使得POC∽△MOB?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】□ABCD中,E、F是對角線BD上不同的兩點,下列條件中,不能得出四邊形AECF一定為平行四邊形的是(

A. BE=DF B. AE=CF C. AF//CE D. BAE=DCF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖象與軸交于點,,與軸交于點,連接,為線段上一點,于點,軸交拋物線于點

1)求二次函數(shù)的解析式;

2)①當(dāng)為等腰三角形時,求點的坐標(biāo);

②求的最大值;

3)直接寫出當(dāng)面積最大時,點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=﹣x2+x+6及一次函數(shù)y=﹣x+m,將該二次函數(shù)在x軸上方的圖象沿x軸翻折到x軸下方,圖象的其余部分不變,得到一個新函數(shù)(如圖所示),請你在圖中畫出這個新圖象,當(dāng)直線y=﹣x+m與新圖象有4個交點時,m的取值范圍是( 。

A. <m<3 B. <m<2 C. ﹣2<m<3 D. ﹣6<m<﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線軸交于點,與軸交點,拋物線經(jīng)過,兩點,與軸交于另一點.如圖1,點為拋物線上任意一點,過點軸交

1)求拋物線的解析式;

2)當(dāng)是直角三角形時,求點坐標(biāo);

3)如圖2,作點關(guān)于直線的對稱點,作直線與拋物線交于,設(shè)拋物線對稱軸與軸交點為,當(dāng)直線經(jīng)過點時,請你直接寫出的長.

查看答案和解析>>

同步練習(xí)冊答案