【題目】如圖一段拋物線:y=﹣x(x﹣3)(0≤x≤3),記為C1,它與x軸交于點(diǎn)O和A1;將C1繞A1旋轉(zhuǎn)180°得到C2,交x軸于A2;將C2繞A2旋轉(zhuǎn)180°得到C3,交x軸于A3,如此進(jìn)行下去,直至得到C10,若點(diǎn)P(28,m)在第10段拋物線C10上,則m的值為( 。

A. 1 B. ﹣1 C. 2 D. ﹣2

【答案】D

【解析】

求出拋物線C1x軸的交點(diǎn)坐標(biāo),觀察圖形可知第偶數(shù)號拋物線都在x軸下方,然后求出到拋物線平移的距離,再根據(jù)向右平移以及沿x軸翻折,表示出拋物線C10的解析式,然后把點(diǎn)P的坐標(biāo)代入計(jì)算即可得解.

y=0,則x(x3)=0,

解得x1=0,x2=3,

A1(3,0),

由圖可知,拋物線C10x軸下方,

相當(dāng)于拋物線C1向右平移3×9=27個(gè)單位,再沿x軸翻折得到,

∴拋物線C10的解析式為y=(x27)(x273)=(x27)(x30),

P(28,m)在第10段拋物線C10上,

m=(2827)(2830)=2.

故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實(shí)踐:

已知點(diǎn)D為等邊△ABC 的邊AB所在直線上一動點(diǎn)(點(diǎn)D與點(diǎn)A和點(diǎn)B不重合),連接CD,以CD為邊在CD上方作等邊△CDE,連接 AE

操作發(fā)現(xiàn):

1)如圖1,點(diǎn)D在邊AB上,則 AEBD 有怎樣的數(shù)量關(guān)系? 說明理由;

類比猜想:

2)如圖2,若點(diǎn)D在邊BA延長線上,則 AEBD有怎樣的數(shù)量關(guān)系? 說明理由;

拓廣探究:

3)如圖3,點(diǎn)D在邊AB上,以CD為邊分別在CD下方和上方作等邊△CDF 和等邊△CDE,連接 AE,BF,直接寫出AE,BF AB的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了提高中學(xué)生身體素質(zhì)學(xué)校開設(shè)了A籃球、B足球、C跳繩、D羽毛球四種體育活動,為了解學(xué)生對這四種體育活動的喜歡情況,在全校隨機(jī)抽取若干名學(xué)生進(jìn)行問卷調(diào)查(每個(gè)被調(diào)查的對象必須選擇而且只能在四種體育活動中選擇一種)將數(shù)據(jù)進(jìn)行整理并繪制成以下兩幅統(tǒng)計(jì)圖(未畫完整)

1)這次調(diào)查中,一共調(diào)查了________名學(xué)生;

2)請補(bǔ)全兩幅統(tǒng)計(jì)圖;

3)若有3名喜歡跳繩的學(xué)生1名喜歡足球的學(xué)生組隊(duì)外出參加一次聯(lián)誼活動,欲從中選出2人擔(dān)任組長(不分正副)求一人是喜歡跳繩、一人是喜歡足球的學(xué)生的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在Rt△ABC中,∠ACB=90°,∠A=30°,點(diǎn)D是AB的中點(diǎn),DE⊥BC,垂足為點(diǎn)E,連接CD.

(1)如圖1,求DE與BC的數(shù)量關(guān)系;

(2)如圖2,若P是線段CB上一動點(diǎn)(點(diǎn)P不與點(diǎn)B、C重合),連接DP,將線段DP繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)60°,得到線段DF,∠PDF=60°連接BF,請猜想DE、BF、BP三者之間的數(shù)量關(guān)系,并證明你的結(jié)論;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將點(diǎn)A(31)繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°到點(diǎn)B,則點(diǎn)B的坐標(biāo)為__________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知三個(gè)邊長分別為1,2,3的正三角形從左到右如圖排列,則圖中陰影部分面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線y=kx+b與反比例函數(shù)y=(x0)的圖象分別交于點(diǎn) A(m,3)和點(diǎn)B(6,n),與坐標(biāo)軸分別交于點(diǎn)C和點(diǎn)D.

(1)求直線AB的解析式;

(2)若點(diǎn)Px軸上一動點(diǎn),當(dāng)△COD與△ADP相似時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程kx2+(3k+1)x+3=0.

(1)求證:無論k取任何實(shí)數(shù)時(shí),方程總有實(shí)數(shù)根;

(2)若二次函數(shù)y=kx2+(3k+1)x+3的圖象與x軸兩個(gè)交點(diǎn)的橫坐標(biāo)均為整數(shù),且k為正整數(shù),求k值;

(3)在(2)的條件下,設(shè)拋物線的頂點(diǎn)為M,直線y=-2x+9與y軸交于點(diǎn)C,與直線OM交于點(diǎn)D.現(xiàn)將拋物線平移,保持頂點(diǎn)在直線OD上.若平移的拋物線與射線CD(含端點(diǎn)C)只有一個(gè)公共點(diǎn),求它的頂點(diǎn)橫坐標(biāo)的值或取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)A,B在反比例函數(shù)的圖象上,橫坐標(biāo)分別為1、3.5,AB=AC,BC軸平行,若△ABC的面積為,則的值為( )

A. B. 5

C. D.

查看答案和解析>>

同步練習(xí)冊答案