(2011•朝陽)如圖(1),在△ABC中,∠ACB=90°,AC=BC=
2
,點(diǎn)D在AC上,點(diǎn)E在BC上,且CD=CE,連接DE.
(1)線段BE與AD的數(shù)量關(guān)系是
BE=AD
BE=AD
,位置關(guān)系是
BE⊥AD
BE⊥AD

(2)如圖(2),當(dāng)△CDE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一定角度α后,(1)中的結(jié)論是否仍然成立?如果成立,請(qǐng)給予證明;如果不成立,請(qǐng)說明理由.
(3)繞點(diǎn)C繼續(xù)順時(shí)針旋轉(zhuǎn)△CDE,當(dāng)90°<α<180°時(shí),延長DC交AB于點(diǎn)F,請(qǐng)?jiān)趫D(3)中補(bǔ)全圖形,并求出當(dāng)AF=1+
3
3
時(shí),旋轉(zhuǎn)角α的度數(shù).
分析:(1)利用線段間的和差關(guān)系求得BE=AD,根據(jù)已知條件∠ACB=90°推知兩線段的位置關(guān)系;
(2)先延長BE交AD于點(diǎn)M在△BCE和△ACD中,根據(jù)BC=AC,∠BCE=∠ACD,CE=CD,得出△BCE≌△ACD,從而證出BE=AD,再根據(jù)∠1=∠2,∠CAD=∠CBE,即可證出(1)中的結(jié)論仍然成立;
(3)先過點(diǎn)C作CN⊥AB于點(diǎn)N,根據(jù)已知條件得出CN=AN=
1
2
AB=1,∠BCN=45°,得出FN=AF-AN=
3
3
,再在Rt△CNF中,tan∠FCN=
FN
CN
=
3
3
,得出∠BCF的度數(shù),從而證出∠BCE=∠BCF+∠FCE=105°,再求出AF的值,從而得出角α的度數(shù).
解答:解:(1)∵AC=BC=
2
,CD=CE,
∴BE=AD,
∵∠ACB=90°,
∴AC⊥BC,
∴BE⊥AD.

(2)仍然成立.
如圖(1),延長BE交AD于點(diǎn)M.
在△BCE和△ACD中,BC=AC,∠BCE=∠ACD=α,CE=CD,
∴△BCE≌△ACD.
∴BE=AD.
∵∠1=∠2,∠CAD=∠CBE,∴∠AMB=∠ACB=90°.
即 BE⊥AD.

(3)如圖(2),過點(diǎn)C作CN⊥AB于點(diǎn)N,
∵AC=BC=
2
,∠ACB=90°,
∴CN=AN=
1
2
AB=1,∠BCN=45°.
∵AF=1+
3
3

∴FN=AF-AN=
3
3

在Rt△CNF中,tan∠FCN=
FN
CN
=
3
3
,
∴∠FCN=30°.
∴∠BCF=∠BCN-∠FCN=15°.
∵∠FCE=90°,
∴∠BCE=∠BCF+∠FCE=105°.
∴當(dāng)AF=1+
3
3
時(shí),旋轉(zhuǎn)角α為105°.
點(diǎn)評(píng):此題考查了解等腰直角三角形;熟練運(yùn)用旋轉(zhuǎn)的性質(zhì),全等三角形的判斷與性質(zhì),銳角三角函數(shù)值等知識(shí)點(diǎn)進(jìn)行解答即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2011•朝陽)如圖,沿Rt△ABC的中位線DE剪切一刀后,用得到的△ADE和四邊形DBCE拼圖,下列圖形:①平行四邊形;②菱形;③矩形;④等腰梯形.一定能拼出的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•朝陽)如圖,已知∠1=∠2=∠3=65°,則∠4的度數(shù)為
115°
115°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•朝陽)如圖,在方格紙上建立的平面直角坐標(biāo)系中,Rt△ABC關(guān)于y軸對(duì)稱的圖形為Rt△DEF,則點(diǎn)A的對(duì)應(yīng)點(diǎn)D的坐標(biāo)是
(2,1)
(2,1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•朝陽)如圖,身高是1.6m的某同學(xué)直立于旗桿影子的頂端處,測得同一時(shí)刻該項(xiàng)同學(xué)和旗桿的影子長分別為1.2m和9m,則旗桿的高度為
12
12
m.

查看答案和解析>>

同步練習(xí)冊(cè)答案