如圖,點(diǎn)A1、A2、A3在x軸上,且OA1=A1A2=A2A3,分別過點(diǎn)A1、A2、A3作y軸的平行線,與反比例函數(shù)y=
4
x
(x>0)
的圖象分別交于點(diǎn)B1、B2、B3,分別過點(diǎn)B1、B2、B3作x軸的平行線,分別與y軸交于點(diǎn)C1、C2、C3,連結(jié)OB1、OB2、OB3,那么圖中陰影部分的面積之和為
2
13
18
2
13
18
分析:先根據(jù)反比例函數(shù)上的點(diǎn)向x軸、y軸引垂線形成的矩形面積等于反比例函數(shù)的|k|,得到S△OB1C1=S△OB2C2=S△OB3C3=
1
2
|k|=2,再根據(jù)相似三角形的面積比等于相似比的平方得到3個(gè)陰影部分的三角形的面積從而求得面積和.
解答:解:根據(jù)題意可知S△OB1C1=S△OB2C2=S△OB3C3=
1
2
|k|=2,
∵OA1=A1A2=A2A3,A1B1∥A2B2∥A3B3∥y軸,
設(shè)圖中陰影部分的面積從左向右依次為s1,s2,s3
則s1=
1
2
|k|=2,
∵OA1=A1A2=A2A3,
∴s2:S△OB2C2=1:4,s3:S△OB3C3=1:9,
∴圖中陰影部分的面積分別是s1=2,s2=
1
2
,s3=
2
9
,
∴圖中陰影部分的面積之和=2+
1
2
+
2
9
=2
13
18

故答案為:2
13
18
點(diǎn)評(píng):此題綜合考查了反比例函數(shù)的性質(zhì),此題難度稍大,綜合性比較強(qiáng),注意反比例函數(shù)上的點(diǎn)向x軸、y軸引垂線形成的矩形面積等于反比例函數(shù)的|k|.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,點(diǎn)A1,A2,A3,A4在射線OA上,點(diǎn)B1,B2,B3在射線OB上,且A1B1∥A2B2∥A3B3,A2B1∥A3B2∥A4B3.若△A2B1B2,△A3B2B3的面積分別為1,4,則圖中三個(gè)陰影三角形面積之和為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,點(diǎn)A1、A2,B1、B2,C1、C2分別是△ABC的邊BC、CA、AB的三等分點(diǎn),若△ABC的周長(zhǎng)為L(zhǎng),則六邊形A1A2B1B2C1C2的周長(zhǎng)為(  )
A、
1
3
L
B、3L
C、2L
D、
2
3
L

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)A1、A2、A3、…、An在拋物線y=x2圖象點(diǎn)B1、B2、B3、…、Bn在y軸上,若△A1B0B1、△A2B1B2、…、△AnBn-1Bn都為等腰直角三角形(點(diǎn)B0是坐標(biāo)原點(diǎn)),則△A2012B2011B2012的腰長(zhǎng)=
2012
2
2012
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)A1、A2、A3、…、An在拋物線y=x2圖象上,點(diǎn)B1、B2、B3、…、Bn在y軸上,若△A1B0B1、△A2B1B2、…、△AnBn-1Bn都為等腰直角三角形(點(diǎn)B0是坐標(biāo)原點(diǎn)),則△A2013B2012B2013的腰長(zhǎng)=
2013
2
2013
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•南京二模)如圖,點(diǎn)A1、A2、A3、A4、A5在⊙O上,且
A1A2
=
A2A3
=
A3A4
=
A4A5
=
A5A1
,B、C分別是A1A2、A2A3上兩點(diǎn),A1B=A2C,A5B與A1C相交于點(diǎn)D,則∠A5DC的度數(shù)為
108°
108°

查看答案和解析>>

同步練習(xí)冊(cè)答案