精英家教網 > 初中數學 > 題目詳情

【題目】如圖,△ABC是等邊三角形,D、E分別在BC、AC上,且CD=AE,ADBE相交于P,BQADQ.

1)求證:;

2)若PQ=4,PE=1,求AD的長.

【答案】1)見解析;(29.

【解析】

1)先根據等邊三角形的性質和SAS證明△ABE≌△CAD,可得∠ABE=CAD,再利用三角形的外角性質即得結論;

2)先利用30°角的直角三角形的性質求出BP的長,進而可得BE的長,再利用(1)的結論即可得出答案.

1)∵△ABC是等邊三角形,

AB=AC,∠BAE=C=60°

在△ABE和△CAD中,

∴△ABE≌△CAD(SAS)

∴∠ABE=CAD,

∴∠BPQ=ABE+BAP=CAD+BAP=BAC=60;

(2)RtBPQ中,∠BPQ=60°,∴∠PBQ=30°

PQ=4,∴BP=8,

又∵PE=1,∴BE=BP+PE=9

(1)得△ABE≌△CAD,∴AD=BE=9.

答:AD長為9.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某公司銷售員的獎勵工資由兩部分組成:基本工資,每人每月2400元;獎勵工資,每銷售一件產品,獎勵10.

1)設某銷售員月銷售產品件,他應得的工資為元,求之間的函數關系式;

2)若該銷售員某月工資為3600元,他這個月銷價了多少件產品?

3)要使月工資超過4200元,該月的銷售量應當超過多少件?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,平面直角坐標系中,,軸正半軸上一點,連接,在第一象限作 ,過點作直線軸于,直線與直線交于點,且,則直線解析式為____________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,BDABC的角平分線,且BD=BC,EBD延長線上的一點,BE=BA,過EEFABF為垂足.下列結論:①△ABDEBC;②∠BCE+BCD=180°;③AD=AE=EC;④BA+BC=2BF;其中正確的是(   )

A.①②③B.①③④C.①②④D.①②③④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】拋物線經過點A,0),B,0),且與y軸相交于點C

1求這條拋物線的表達式;

2)求∠ACB的度數;

3設點D是所求拋物線第一象限上一點,且在對稱軸的右側,點E在線段AC上,且DEAC,當DCEAOC相似時,求點D的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知ABC中,ABAC,分別在AB的右側、AC的左側作等邊ABE和等邊ACD,BECD相交于點F,連接BD,若BD=BF,BDF__________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,在等腰Rt△ABC,BAC=90°,EAC上(且不與點A、C重合.在ABC的外部作等腰Rt△CED,使CED=90°連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF

1求證AEF是等腰直角三角形;

2如圖2,CED繞點C逆時針旋轉,當點E在線段BC上時,連接AE,求證AF=AE;

3如圖3CED繞點C繼續(xù)逆時針旋轉當平行四邊形ABFD為菱形,CEDABC的下方時,AB=2,CE=2,求線段AE的長

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知ABCD的周長為26,∠ABC=120°,BD為一條對角線,⊙O內切于△ABD,E,F,G為切點,已知⊙O的半徑為.求ABCD的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】矩形ABCD中,AB=8,AD=6,EBC邊上一點,將△ABE沿著AE翻折,點B落在點F處,當△EFC為直角三角形時BE=_____

查看答案和解析>>

同步練習冊答案