【題目】如圖,點C在以AB為直徑的⊙O上,AD與過點C的切線垂直,垂足為點D.
(1)求證:AC平分∠DAB;
(2)求證:AC2=ADAB;
(3)若AD=,sinB=,求線段BC的長.
【答案】(1)詳見解析;(2)詳見解析;(3).
【解析】分析:(1)連接OC,由可以得到 證出AD∥OC,由平行線的性質(zhì)證出,即可得出結(jié)論;
(2)由圓周角定理證出 證明 得出對應邊成比例,即可得出結(jié)論;
(3)由相似三角形的性質(zhì)得出 得出求出 在中,由勾股定理即可求出BC的長.
詳解:(1)證明:連接OC,如圖所示:
∵CD切于C,
∴CO⊥CD,
又∵AD⊥CD,
∴AD∥CO.
∴∠DAC=∠ACO,
∵OA=OC,
∴∠ACO=∠CAO,
∴∠DAC=∠CAO,
∴AC平分∠BAD.
(2)證明:∵AB為的直徑,
∴
∵∠DAC=∠CAO,
∴△ADC∽△ACB,
∴AD:AC=AC:AB,
∴
(3)由(2)得:△ADC∽△ACB,
∴∠ACD=∠B,
∴
∴
∵
∴
在Rt△ABC中,
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,正方形紙片ABCD中,對角線AC,BD交于點O,折疊正方形紙片ABCD,使AD落在BD上,點A恰好與BD上的點F重合,展開后折痕DE分別交AB,AC于點E,G,連接GF,給出下列結(jié)論:
①∠ADG=22.5°;②tan∠AED=2;③S△AGD=S△OGD;④四邊形AEFG是菱形;⑤BE=2OG;⑥若S△OGF=1,則正方形ABCD的面積是6+4 ,其中正確的結(jié)論個數(shù)有()
A. 2個B. 4個C. 3個D. 5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一工地計劃租用甲、乙兩輛車清理淤泥,從運輸量來估算,若租兩車合運,10天可以完成任務,若甲車的效率是乙車效率的2倍.
甲、乙兩車單獨完成任務分別需要多少天?
已知兩車合運共需租金65000元,甲車每天的租金比乙車每天的租金多1500元試問:租甲乙車兩車、單獨租甲車、單獨租乙車這三種方案中,哪一種租金最少?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,點P是線段AD上一動點,O為BD的中點,PO的延長線交BC于Q.
(1)求證:四邊形PBQD是平行四邊形;
(2)若AD=8cm,AB=6cm,P從點A出發(fā),以1cm/秒的速度向D運動(不與D重合),設點P運動時間為t秒.
①請用t表示PD的長;②求t為何值時,四邊形PBQD是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在數(shù)軸上,點A,B,C表示的數(shù)分別是-6,10,12.點A以每秒3個單位長度的速度向右運動,同時線段BC以每秒1個單位長度的速度也向右運動.
(1)運動前線段AB的長度為________;
(2)當運動時間為多長時,點A和線段BC的中點重合?
(3)試探究是否存在運動到某一時刻,線段AB=AC?若存在,求出所有符合條件的點A表示的數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學校為了提高學生跳遠科目的成績,對全校500名九年級學生開展了為期一個月的跳遠科目強化訓練.王老師為了了解學生的訓練情況,強化訓練前,隨機抽取了該年級部分學生進行跳遠測試,經(jīng)過一個月的強化訓練后,再次測得這部分學生的成績,將兩次測得的成績制作成如圖所示的統(tǒng)計圖和不完整的統(tǒng)計表
訓練后學生成績統(tǒng)計表
成績/分數(shù) | 6分 | 7分 | 8分 | 9分 | 10分 |
人數(shù)/人 | 1 | 3 | 8 | 5 | n |
根據(jù)以上信息回答下列問題
(1)訓練后學生成績統(tǒng)計表中n= ,并補充完成下表:
平均分 | 中位數(shù) | 眾數(shù) | |
訓練前 | 7.5 | 8 | |
訓練后 | 8 |
(2)若跳遠成績9分及以上為優(yōu)秀,估計該校九年級學生訓練后比訓練前達到優(yōu)秀的人數(shù)增加了多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:在矩形ABCD中,點F為AD中點,點E為AB邊上一點,連接CE、EF、CF,EF平分∠AEC.
(1)如圖1,求證:CF⊥EF;
(2)如圖2,延長CE、DA交于點K, 過點F作FG∥AB交CE于點G若,點H為FG上一點,連接CH,若∠CHG=∠BCE, 求證:CH=FK;
(3)如圖3, 過點H作HN⊥CH交AB于點N,若EN=11,FH-GH=1,求GK長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知以Rt△ABC的邊AB為直徑作△ABC的外接圓⊙O,∠B的平分線BE交AC于D,交⊙O于E,過E作EF∥AC交BA的延長線于F.
(1)求證:EF是⊙O切線;
(2)若AB=15,EF=10,求AE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com